Deepflow: Using Argument Schemes to
Query Relational Databases

Jann MULLER #! and Anthony HUNTER °

2SAP UK, Belfast BT3 9DT, United Kingdom, jann.mueller @ sap.com
b University College London, London WCIE 6BT, a.hunter@cs.ucl.ac.uk

Keywords. argument schemes, argumentation, domain-specific language, SQL

Project DEEPFLOW aims to extract and analyse the rationale behind design decisions
from textual documentation. Once the data has been extracted and stored in a relational
database, it can be queried with the “dashboard” component described here. The dash-
board provides a language for writing argument schemes [3] and critical questions as a
means to query data about a series of decisions related to a project (what was decided,
who decided it, what were the reasons, which alternatives were considered etc).

Users can create argument schemes and critical questions based on a set of primi-
tive types determined by the entities and relations in the underlying database. Argument
schemes are thus not part of the database schema, but instead they are defined dynam-
ically and on-line. They are used not to structure the database, but to query it. One can
experiment with varying definitions of argument schemes to answer questions such as

1. “How many decisions were supported by expert advice in 2012?”

2. “Which claims were rejected because they were made by experts with fewer than
5 publications?”’

3. “How does that number change if I lessen the restriction to 3 publications?”

The user interface shows a code editor where users can see and edit the list of argument
schemes and critical questions, similar to a Prolog program. Some aggregations are avail-
able, such as COUNT and MAX, which can be used in the definitions of argument schemes.
This allows the user to explore the data base by experimenting with different argument
schemes. For example, the argument scheme “Expert Opinion” (simplified) is written as

expert(X) Aclaim(Y) Aclaims(X,Y) = accept(Y) (1)

Critical questions are rules whose claim negates one of the premises of an argument
scheme. For example to specify that experts are only those with at least five recorded
publications one can write COUNT (publication(X)) < 5 = —expert(X). It is also possi-
ble to define exceptions to critical questions, so the depth of the resulting dialectical tree
is not limited.

!"This work is supported by SAP AG and the Invest NI Collaborative Grant for R&D - RD1208002.

Step 1 Negate the condition of the critical question

[PX) A a(X) = 5(X) | §1 = {~(a(X) AB(X)) A p(X) Ag(X) = g(X)}

Step 2 Simplify and remove disjunctions

| a(X) Ab(X) = =p(X) | S2 = {-a(X) Ap(X) Nq(X) = g(X),
—b(X)Ap(X) Nq(X) = g(X)}

Figure 1. Transforming the dialectical tree of an argument scheme with a critical question (left) to a set of
rules S;.

By translating argument schemes to SQL the task of analysing and selecting records
is offloaded to the database, which is optimised for exactly such queries. The client is
only concerned with creating queries that represent argument schemes.

The results are visualised in several graphics. A second way of querying the data (be-
sides writing argument schemes) is to add additional filters by “drilling down”, ie click-
ing on one of the data points in the visualisations. This allows for a hybrid exploration of
the data, using both argument schemes and non-argumentative attributes.

The process of translating argument schemes with critical questions to SQL queries
consists of three steps. Steps 1 and 2 (see Fig. 1) turn dialectical trees into sets of “flat”
rules and are repeated until the entire tree has been consumed. In Step 3 each of the flat
rules is interpreted as a SQL query. To illustrate the last step, the SQL query generated
for the scheme (1) is given below (critical questions omitted for brevity).

SELECT * FROM claimas Y
JOIN makesClaimas Con C.claimId = Y.claimId

JOIN expert as X on X.expertId = C.expertld

The conclusion of (1), accept(X), does not correspond to a table in the database. This
shows how the language can be used to create new predicates from primitives. Non-
primitive predicates such as accept are modeled as virtual tables (views) on the database,
to enable re-use of intermediate results. Negated predicates are interpreted as EXCEPT
clauses in SQL, making use of the closed world assumption for relational data.

The DEEPFLOW dashboard is written in Haskell, which allows us to leverage an
existing implementation [2] of abstract argument graphs [1]. The server in our case is
an SAP HANA database, but the techniques described here are not platform-specific and
work with any SQL database.

References

[1] Dung, P.: On the Acceptability of Arguments and its Fundamental Role in Nonmonotonic Reasoning,
Logic Programming and n-Person Games. Artificial Intelligence 77 (1995), 321-357

[2] van Gijzel, B.: Tools for the implementation of argumentation models. /ICCSW, Schloss Dagstuhl -
Leibniz-Zentrum fiir Informatik, Germany 35 (2013), 43-48

[3] Walton, D.; Reed, C. & Macagno, F.: Argumentation Schemes, Cambridge University Press, 1994

