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Abstract. In a formal argumentation framework, one is interested in whether a
particular argument is accepted or not under argumentation semantics. When an
argument A is accepted, on the other hand, one may ask a question “what if A were
rejected?” We formulate such counterfactual reasoning in abstract argumentation
frameworks. Based on Lewis’s logic, we define two counterfactual conditionals in
AF and investigate formal properties. We also argue counterfactual dependencies
in AF and modal interpretation of AF in terms of counterfactual conditionals.
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1. Introduction

A counterfactual is a conditional statement representing what would be the case if its
premise were true (although it is not true in fact). For instance, “if Dung had not pub-
lished the seminal paper on formal argumentation in 1995, argumentation in AI would
not have been so popular as it is today” is a counterfactual statement. A formal model of
counterfactuals is firstly developed by Stalnaker [27], in which he provides the possible
worlds semantics for conditional sentences. Stalnaker interprets that a conditional sen-
tence ϕ > ψ is true if ψ is true at the world most like the actual world at which ϕ is true.
Lewis [18,19] provides in-depth analyses of counterfactuals and causation. Since then
counterfactuals have been studied in philosophy [22] and artificial intelligence [14], and
have practically been used in cognitive psychology [8], political science [17] and social
science [20].

Counterfactual reasoning is also used in human dialogue or argument in daily life.
For instance, consider a dialogue in [24]:

Paul: “My car is safe because it has an airbag.”
Olga: “I disagree that an airbag makes your car safe because newspapers recently
reported on airbags expanding without cause.”

In this dialogue, Paul’s argument is refuted by Olga’s counterargument. If Paul has no
evidence to refute Olga’s argument, he would accept her opinion. On the other hand, Paul
may wonder “What if the news source is unreliable?” or may argue “If the news source
were unreliable, then a car with an airbag would be safe”, although he has no reason to
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believe that the news source is unreliable. Such counterfactual arguments are used for
challenging arguments by the opponent and requesting further evidence for justification.

In legal settings, it is a common practice to use counterfacuals for defeating assump-
tions that are incompatible with reality. For instance, suppose an argument by a defense
in a court: “If the suspect killed the victim, the suspect would be at the victim’s apart-
ment at the time of the murder.” Then the defense shows an evidence that the suspect was
in fact at a party which was held far from the victim’s apartment. Legal researches also
study the effect of using counterfactuals on jurors’ perception on the responsibility of an
accused person.

Counterfactual conditionals supposing the wrong to be absent in the antecedent, and deriving
more desirable consequences than in reality in the consequent (e.g. If that drunken driver had
not neglected the stop sign, my client would have had her whole life in front of her) evoke an
emotional response from the jury, which leads them to attribute more responsibility, guilt and
blame to the party responsible for the wrong. [21]

As such, counterfactuals are popularly used in dialogue, argument or dispute, while
little attention has been paid on investigating counterfactuals in formal argumentation.
The purpose of this paper is to provide an argumentation-theoretic interpretation of
counterfactuals. An argumentation framework (AF) [11] represents knowledge about the
world using arguments and attack relations over them. Given an argumentation frame-
work, an argumentation semantics specifies which arguments are accepted or rejected.
Accepting one argument may cause rejecting another argument and the other way round.
Then one may ask “what if an accepted argument were rejected?” or “what if a rejected
argument were accepted?” We formulate such counterfactual arguments in Dung’s ab-
stract argumentation framework and investigate formal properties.

The rest of this paper is organized as follows. Section 2 reviews basic notions of
formal argumentation. Section 3 introduces counterfactual reasoning in AF and investi-
gates formal properties. Section 4 argues counterfactual dependencies in argumentation
frameworks. Section 5 discusses related issues and rounds off the paper.

2. Argumentation Framework

This section reviews formal argumentation frameworks which are in [9,11].

Definition 1 (argumentation framework) Let U be the universe of all possible argu-
ments. An argumentation framework (AF) is a pair (Ar, att) where Ar is a finite subset
of U and att ⊆ Ar ×Ar. An argument A attacks an argument B iff (A,B) ∈ att.

An argumentation framework (Ar, att) is associated with a directed graph in which
vertices are arguments inAr and directed arcs fromA toB exist whenever (A,B) ∈ att.

Definition 2 (indirect attack/defend) Let AF = (Ar, att) and A,B ∈ Ar.

• A indirectly attacks B if there is an odd-length path from A to B in a directed
graph associated with AF .

• A indirectly defends B if there is an even-length (non-zero) path from A to B in
a directed graph associated with AF .



Definition 3 (labelling) A labelling of AF = (Ar, att) is a (total) function L : Ar →
{ in, out, undec }.

When L(A) = in (resp. L(A) = out or L(A) = undec) for A ∈ Ar, it is written
as in(A) (resp. out(A) or undec(A)). In this case, the argument A is accepted (resp.
rejected or undecided) in L.

Definition 4 (complete labelling) A labelling L of AF = (Ar, att) is a complete la-
belling if for each argument A ∈ Ar, it holds that:

• L(A) = in iff L(B) = out for every B ∈ Ar such that (B,A) ∈ att.
• L(A) = out iff L(B) = in for some B ∈ Ar such that (B,A) ∈ att.
• L(A) = undec iff L(A) 6= in and L(A) 6= out.

We say that an argument A is accepted (resp. rejected or undecided) in AF if A is
labelled in (resp. out or undec) in every complete labelling L ofAF . Let in(L) = {A |
L(A) = in}, out(L) = {A | L(A) = out} and undec(L) = {A | L(A) = undec}.

Definition 5 (stable, semi-stable, grounded, preferred labelling) Let L be a complete
labelling of AF . Then

• L is a stable labelling iff undec(L) = ∅.
• L is a semi-stable labelling iff undec(L) is minimal wrt set inclusion among all

complete labellings of AF .
• L is a grounded labelling iff in(L) is minimal wrt set inclusion among all com-

plete labellings of AF .
• L is a preferred labelling iff in(L) is maximal wrt set inclusion among all com-

plete labellings of AF .

A labelling L is universally defined if every AF has at least one L. A complete (or
semi-stable, grounded, preferred) labelling is universally defined, while a stable labelling
is not. There is a one-to-one correspondence between the set in(L) with a complete
(resp. stable, semi-stable, grounded, preferred) labelling L of AF and a complete (resp.
stable, semi-stable, grounded, preferred) extension ofAF . In this paper, when we simply
say “labelling” it means one of the five labellings introduced above.2

3. Counterfactual Reasoning in AF

Suppose AF1 = ({A,B,C}, {(A,B), (B,C)}) which has the complete labelling
{in(A), out(B), in(C)}. ThenA and C are accepted, andB is rejected inAF1. In this
case, one can reason that:
“If A were rejected, then B would be accepted,”
“If A were rejected, then C would be rejected,” or
“If B were accepted, then C would be rejected.”
All these sentences are counterfactuals.

- -• • •

AF1

A B C

To provide semantical grounds for those sentences, AF is modified to another AF ′

such that an argument A which is accepted in AF is rejected in AF ′; or an argument
B which is rejected in AF is accepted in AF ′. There are several ways to construct such

2The result of this paper is directly extended to other argumentation semantics as well.



AF ′ from AF , and we choose AF ′ which is most similar to AF . To change in(A) in
AF into out(A) in AF ′, we introduce a new argument X and an attack relation (X,A)
to AF . The idea behind this modification is that if there exists a new argument X and
an attack relation (X,A), the argument A will turn out. By contrast, to change out(A)
in AF into in(A) in AF ′, we remove every attack relation (X,A) from AF . The idea
behind this modification is that if no argument attacks A, the argument A will turn in.
Such a modification is formally defined as follows.

Definition 6 (modification of AF) Let AF = (Ar, att) and A ∈ Ar.

AF c
+A = (Ar, att \ { (X,A) | X ∈ Ar }),

AF c
−A = (Ar ∪ {X}, att ∪ { (X,A)}) where X ∈ U \Ar and U \Ar 6= ∅.

AF c
+A and AF c

−A are simply written AF c if the argument A is clear in the context.

By definition, AF c
+A is obtained by removing all attack relations (X,A) ∈ att

from AF . This makes L(A) = in for every labelling L, if any, in AF c
+A. On the other

hand, AF c
−A is obtained by introducing a new argument X and an attack relation (X,A)

to AF . This makes L(A) = out for every labelling L, if any, in AF c
−A. The newly

introduced argument X is not in AF but in the universe U of possible arguments.
Lewis [18] introduces two different types of counterfactual sentences. Given two

different events ϕ and ψ, “if it were the case that ϕ, then it would be the case that ψ”
(written ϕ2→ ψ) and “If it were the case that ϕ, then it might be the case that ψ.”
(written ϕ3→ ψ). Here ϕ2→ ψ implies ϕ3→ ψ. We consider similar types of
counterfactuals in AF.

Definition 7 (counterfactuals in AF) Let AF = (Ar, att), A,B ∈ Ar and ` ∈
{in, out}.

• in(A)2→ `(B) is true in AF if L(B) = ` in every labelling L of AF c
+A

• in(A)3→ `(B) is true in AF if L(B) = ` in some labelling L of AF c
+A

• out(A)2→ `(B) is true in AF if L(B) = ` in every labelling L of AF c
−A

• out(A)3→ `(B) is true in AF if L(B) = ` in some labelling L of AF c
−A

The “labelling” means one of the five labellings introduced in Section 2. The rela-
tions “`1(A)2→ `2(B)” and “`1(A)3→ `2(B)” are called counterfactual condition-
als where `1 or `2 is either in or out. We do not consider counterfactual conditionals
which include arguments with the labelling undec in this paper, and `i means either in
or out throughout the paper. We call `1(A) the antecedent and `2(B) the consequent of
the conditional.

Definition 8 (negation, etc) Let C1 and C2 be two counterfactual conditionals in AF .

• ¬C1 is true in AF if C1 is not true in AF .
• C1 ∨ C2 is true in AF if C1 or C2 is true in AF .
• C1 ∧ C2 is true in AF if both C1 and C2 are true in AF .
• C1 ⊃ C2 is true in AF if ¬C1 or C2 is true in AF .

For simplicity’s sake, “¬ (`1(A)2→ `2(B))” (or “¬ (`1(A)3→ `2(B))”) is abbreviated
as “`1(A)26→ `2(B)” (or “`1(A)36→ `2(B)”) hereafter.



Example 1 Consider AF2 illustrated in the right. It has the complete labelling:
{ in(A), out(B), in(C), out(D), out(E), in(F ) }.
Then, the following counterfacuals hold in AF2:
“out(A)2→ in(B)” (If A were rejected then
B would be accepted), “in(B)2→ out(C)”
(If B were accepted then C would be rejected),
“out(C)3→ in(D)” (If C were rejected then D
might be accepted), “out(C)3→ in(E)” (If C
were rejected then E might be accepted), etc.

AF2

A• -B• -C•
3

D•

s
E
•

F
•

By Definition 7, “in(A)2→ `(B)” (resp. “out(A)2→ `(B)”) vacuously holds if
AF c

+A (resp.AF c
−A) has no labelling. Such a situation happens under the stable labelling

which is not universally defined. Otherwise, AF c
+A (resp. AF c

−A) has a labelling and A
is in (resp. out) in every labelling of it. An argument B appearing in the consequent
of counterfactual conditionals is labelled ` in every (resp. some) labelling of AF c if
the conditional operator is 2→ (resp. 3→). By definition, “`1(A)2→ `2(B)” implies
“`1(A)3→ `2(B)” whenever AF c has a labelling, but not the other way round.

In the rest of this section, we investigate formal properties of counterfactuals in AF.
First, counterfactual conditionals are reflexive.

Proposition 1 Let AF = (Ar, att) and A ∈ Ar. Then `(A)2→ `(A) is true in AF
where ` ∈ {in, out }. `(A)3→ `(A) is also true in AF whenever AF c has a labelling.

Proof: The relation in(A)2→ in(A) (resp. out(A)2→ out(A)) holds in AF because
L(A) = in (resp. L(A) = out) in every labelling of AF c

+A (resp. AF c
−A). The results

imply in(A)3→ in(A) and out(A)3→ out(A) whenever AF c has a labelling. 2

The antecedent of a counterfactual sentence is usually assumed false. However,
counterfactual sentences with true antecedent may happen, for example, in a dialogue
where the participants disagree on the truth of the antecedent. Borrowing an example
from [18], one says: “If Caspar had come, it would have been a good party”. Then the
other replies “That is true; for he did, and it was a good party. You didn’t see him because
you spent the whole time in the kitchen, missing all the fun.” According to Lewis, “a
counterfactual with true antecedent is true iff the consequent is true”. Formally, “if ϕ∧ψ
is true, then ϕ2→ ψ is true” and “if ϕ ∧ ¬ψ is true, then ¬ (ϕ2→ ψ) is true”. This is
also the case in counterfactuals in AF. In what follows, L(′) means L or L′.

Proposition 2 LetAF = (Ar, att),A,B ∈ Ar and L(′) a universally defined labelling.

1. If L(A) = `1 and L(B) = `2 in every labelling L of AF , then `1(A)2→ `2(B)
is true in AF .

2. If L(A) = `1 in every labelling L of AF and L′(B) 6= `2 in some labelling L′
of AF , then `1(A)26→ `2(B) is true in AF .

3. If L(A) = `1 in every labelling L of AF and L′(B) = `2 in some labelling L′
of AF , then `1(A)3→ `2(B) is true in AF .

4. If L(A) = `1 in every labelling L of AF and L′(B) = `2 in no labelling L′ of
AF , then `1(A)36→ `2(B) is true in AF .

Proof: (1) If L(A) = in (resp. L(A) = out) in every labelling L of AF , then
L′(A) = in (resp. L(A) = out) in every labelling L′ of AF c

+A (resp. AF c
−A). Since



the modification from AF to AF c does not change the labelling of A, it does not affect
the labelling of B. Then L(B) = `2 in every labelling L of AF iff L′(B) = `2 in every
labelling L′ of AF c. Hence, `1(A)2→ `2(B) holds in AF . The results of (2)–(4) are
shown in similar ways. 2

In AF1 at the begging of this section, L(A) = in and L(B) = out, so that “in(A)2→
out(B)” holds in AF1. On the other hand, Proposition 2 does not hold in general for
labelling that is not universally defined.

By “if ϕ ∧ ¬ψ is true, then ¬ (ϕ2→ ψ) is true”, modus ponens “if ϕ and ϕ2→
ψ are true, then ψ is true” is valid in Lewis’s logic. In AF, the next results hold by
Proposition 2(2) and (4).

Proposition 3 LetAF = (Ar, att),A,B ∈ Ar and L(′) a universally defined labelling.

1. If L(A) = `1 in every labelling L of AF and `1(A)2→ `2(B) is true in AF ,
then L′(B) = `2 in every labelling L′ of AF .

2. If L(A) = `1 in every labelling L of AF and `1(A)3→ `2(B) is true in AF ,
then L′(B) = `2 in some labelling L′ of AF .

In Lewis’s logic, the relation “(ϕ2→ ψ) ≡ ¬ (ϕ3→ ¬ψ)” and “(ϕ3→ ψ) ≡
¬ (ϕ2→ ¬ψ)” hold. The following relations hold for counterfactuals in AF. In what
follows, given ` ∈ {in, out}, ` is out (resp. in) if ` is in (resp. out).

Proposition 4 Let AF = (Ar, att) and A,B ∈ Ar.

1. If `1(A)2→ `2(B) is true in AF , then `1(A)36→ `2(B) is true in AF .
2. If `1(A)3→ `2(B) is true in AF , then `1(A)26→ `2(B) is true in AF .

The converse relations also hold under stable labelling.

Proof: The if-parts are straightforward by definition. The converse also holds under sta-
ble labelling because if it is not the case that `2(B) in some (resp. every) stable labelling
of AF c then `2(B) in every (resp. some) stable labelling of AF c. 2

The fact that the converse relations do not generally hold in Proposition 4 is due
to the existence of arguments with the labelling undec. Lewis’s logic does not satisfy
the law of conditional excluded middle: (ϕ2→ ψ) ∨ (ϕ2→ ¬ψ), which is satisfied
by Stalnaker’s logic [27]. In AF it may happen that both “in(A)2 6→ in(B)” and
“in(A)26→ out(B)”. In Lewis’s counterfactuals, if (ϕ2→ ψ) and (ϕ2→ ¬ψ) are
both false, then (ϕ3→ ψ) and (ϕ3→ ¬ψ) are both true. In AF, on the other hand, the
truth of both “in(A)26→ in(B)” and “in(A)26→ out(B)” implies the truth of both
“in(A)3→ in(B)” and “in(A)3→ out(B)” under stable labelling. However, this im-
plication does not hold in general because it may be that “in(A)2→ undec(B)” holds.
Such disagreement will be resolved if we allow arguments with the undec labelling in
counterfactual conditionals, but we do not pursue the issue further in this paper.

Lewis [18] argues three cases of counterfactual fallacies which distinguish coun-
terfactual conditionals from the material conditional. The fallacy of strengthening the
antecedent is the invalid inference pattern from (ϕ → ψ) to (ϕ ∧ χ2→ ψ). The fal-
lacy of transitivity is the invalid inference pattern from (χ2→ ϕ) and (ϕ2→ ψ) to
(χ2→ ψ). The fallacy of contraposition is the invalid inference pattern from (ϕ2→ ψ)
to (¬ψ2→ ¬ϕ). These features are also the case in counterfactuals in AF.



Proposition 5 Let AF = (Ar, att) and A,B,C ∈ Ar.

• `1(A)2→ `2(B) in AF does not imply (`1(A) ∧ `3(C))2→ `2(B) in AF .3

• (`1(A)2→ `2(B)) ∧ (`2(B)2→ `3(C)) in AF does not imply
`1(A)2→ `3(C) in AF .

• `1(A)2→ `2(B) in AF does not imply `2(B)2→ `1(A) in AF .

The above results also hold by replacing 2→ with 3→.

Example 2 Consider AF3 illustrated in the right. It holds that
• “in(D)2→ in(F )” holds in AF3 but

“(in(B) ∧ in(D))26→ in(F )” in AF3.
• “(in(B)2→ in(D)) ∧ (in(D)2→ in(F ))”

holds in AF3 but “in(B)26→ in(F )” in AF3.
• “in(E)2→ out(F )” holds in AF3 but

“in(F )26→ out(E)” in AF3.

-
6
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Counterfactuals are nonmonotonic, i.e., it may happen that ϕ2→ ψ and (ϕ∧χ)2→
¬ψ. This is also the case in counterfactuals in AF. Nonmonotonicity implies the fallacy
of strengthening the antecedent. Note that although contraposition of counterfactuals is
invalid in general, inference by modus tollens on a counterfactual is valid, that is, ¬ϕ is
inferred from (ϕ2→ ψ) and ¬ψ. Modus tollens also holds in counterfactuals in AF.

Proposition 6 Let AF = (Ar, att) and A,B ∈ Ar. If `1(A)2→ `2(B) is true in AF
and L(B) 6= `2 for any labelling L of AF , then L(A) 6= `1 for any labelling L of AF .

Proof: Suppose in(A)2→ in(B) holds in AF and L(B) 6= in for any labelling L of
AF . If L′(A) = in for some labelling L′ of AF , then the fact that B has the labelling
in after removing any attack relation (X,A) in AF c

+A implies that L′(B) = in in
the labelling L′ of AF such that L′(A) = in. This contradicts the assumption that
L(B) 6= in for any labelling L of AF . Other cases are shown in similar ways. 2

Clearly, modus tollens does not hold for the counterfactual conditional 3→. If
`1(A)3→ `2(B) is true in AF and L(B) 6= `2 for some labelling L of AF , then it does
not necessarily hold that L(A) 6= `1 for any labelling L of AF .

Proposition 7 Let AF = (Ar, att) and A,B,C ∈ Ar. If (`1(A)2→ `2(B)) ∧
(`2(B)2→ `1(A)) is true in AF , then (`1(A)2→ `3(C))⊃ (`2(B)2→ `3(C)) is true
in AF .

Proof: We show the case of `1 = `2 = in. Suppose that both in(A)2→ in(B) and
in(B)2→ in(A) hold in AF . Then, A is labelled in iff B is labelled in in both AF c

+A

andAF c
+B . Then, if L(C) = `3 in every labelling ofAF c

+A , it is also the case inAF c
+B .

Other cases are shown in similar ways. 2

Proposition 7 does not hold for 3→. Two counterfactual conditionals are combined.

3We do not provide a formal definition of a counterfactual having conjunction in its antecedent, but the
intended meaning is obvious. For instance, “(in(A) ∧ in(B))2→ in(C)” is true in AF if L(C) = in

in every labelling L of the argumentation framework which is obtained from AF by removing every attack
relation attacking A or B.



Proposition 8 Let AF = (Ar, att) and A,B,C ∈ Ar. If (`1(A)2→ `2(B)) ∧
(`1(A)2→ `3(C)) is true in AF , then `1(A)2→ (`2(B) ∧ `3(C)) is true in AF .4

Proof: If B is labelled `2 and C is labelled `3 in every labelling of AF c
+A, then `2(B) ∧

`3(C) is true in every labelling of AF c
+A. Hence, (in(A)2→ `2(B)) ∧ (in(A)2→

`3(C)) imply in(A)2→ (`2(B) ∧ `3(C)). Similarly, it is shown that (out(A)2→
`2(B)) ∧ (out(A)2→ `3(C)) imply out(A)2→ (`2(B) ∧ `3(C)). 2

Such combination property does not hold for 3→. In Example 1, both “in(B)3→
in(D)” and “in(B)3→ in(E)” hold in AF2, but “in(B)36→ (in(D) ∧ in(E))”.

4. Counterfactual Dependencies

A counterfactual sentence may be true even if there is no causal dependency between the
antecedent and the consequent. In fact, “if ϕ∧ψ is true, then ϕ2→ ψ is true”, so that the
counterfactual conditionals do not require any causal relation between ϕ and ψ. Lewis
argues that “we do know that causation has something or other to do with counterfactu-
als” [19] and defines counterfactual dependencies between sentences. Formally, an event
ϕ depends causally on another event ψ iff both (ψ2→ ϕ) and (¬ψ2→ ¬ϕ) hold. This
definition is captured in AF as follows.

Definition 9 (counterfactual dependencies) Let AF = (Ar, att) and A,B ∈ Ar.
Then, `1(A)2

c→ `2(B) is true in AF if both `1(A)2→ `2(B) and `1(A)2→ `2(B)
hold in AF where `1, `2 ∈ {in, out }. In this case, we say that `2(B) causally depends
on `1(A). The relation “`1(A)2

c→ `2(B)” is called a counterfactual dependency.

By definition, `1(A)2
c→ `2(B) implies `1(A)2→ `2(B), but not vice versa. In

Example 1, “out(A)2→ in(F )” holds in AF2, but “out(A)26 c→ in(F )”, for example.
Unlike 2→, the result of Proposition 2(1) does not hold for 2c→ in general. Like 2→, the
relation 2

c→ is reflexive but not transitive. Strengthening the antecedent or contraposition
is invalid, while modus ponens and modus tollens are valid. Propositions 7 and 8 also
hold for 2

c→. In AF an argument causally depends on another argument if there is a
directed path between those arguments. Formally, the following relations hold.

Proposition 9 Let AF = (Ar, att), A,B ∈ Ar and ` ∈ {in, out }.

• If `(A)2c→ `(B) is true in AF , then A indirectly defends B.
• If `(A)2c→ `(B) is true in AF , then A indirectly attacks B.

Proof: Suppose that in(A)2 c→ in(B) holds in AF . Then both in(A)2→ in(B) and
out(A)2→ out(B) hold in AF . Then B is labelled in in every labelling of AF c

+A,
and B is labelled out in every labelling of AF c

−A. Such a change of labelling happens
only when there is a directed path fromA toB. IfA does not indirectly defendsB, every
path from A to B is an indirect attack relation. Since in(B) in AF c

+A, for any argument
X ∈ Ar such that (X,B) ∈ att, there is an argument Y ∈ Ar such that (Y,X) ∈ att
and in(Y ) in AF c

+A. Then Y indirectly defends B, but A does not indirectly defend

4We do not provide the definition of a counterfactual having conjunction in its consequent, but the intended
meaning is obvious.



Y (i.e., every path from A to B is indirectly attacking). In this case, making A out in
AF c
−A does not change the labelling of B and B is labelled in in every labelling of

AF c
−A. Contradiction. The other cases are shown in similar ways. 2

The converse of Proposition 9 does not hold in general. In Example 2, B indirectly

defends F in AF3, but in(B)2
c

6→ in(F ). Note that Lewis does not use the conditional
operator 3→ for defining causal dependencies between events. We can also observe that
the relation 3→ is inappropriate for defining causal dependencies between arguments.
For instance, consider AF = ({A,B,C}, {(B,C), (C,B)}). Then, both in(A)3→
in(B) and out(A)3→ out(B) hold, while there is no connection between A and B.

Lewis distinguishes “causal dependencies” from “causation”. He says:

Causal dependence among actual events implies causation. If c and e are two actual events
such that e would not have occurred without c, then c is a cause of e. But I reject the converse.
Causation must always be transitive; causal dependence may not be; so there can be causation
without causal dependence. [19, p. 563]5

In the context of AF, indirect attack/defend relations are transitively combined
and considered a kind of “causation”. By contrast, counterfactual dependencies are
not transitive (cf. Example 2). Proposition 9 shows that counterfactual dependen-
cies imply indirect attack/defend relations between arguments, which conforms to
Lewis’s view that causal dependencies imply causation. Different causes may interact.
Suppose AF4 illustrated in the right. Then,
“in(A)2→ out(B)” but “out(A)26→ in(B)” imply

“in(A)2
c

6→ out(B)”. Likewise, “in(C)2→ out(B)” but

“out(C)26→ in(B)” imply “in(C)2
c

6→ out(B)”.

-

?

�
• •

•

A B

C
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Thus, out(B) causally depends on neither in(A) nor in(C). In this AF4, the argument
A attacks B and, at the same time, indirectly defends B via C. The argument B is re-
jected because the argument A is accepted in AF4. Thus, the existence of A is the actual
cause of rejecting B. On the other hand, if A were rejected then C would be accepted,
which results in rejecting B. In this sense, the argument C is considered a “potential” al-
ternative cause of rejectingB. Lewis distinguishes the actual cause from potential causes
using the term “preemption” as follows:

Suppose that c1 occurs and causes e; and that c2 also occurs and does not cause e, but would
have caused e if c1 had been absent. Thus c2 is a potential alternative cause of e, but is pre-
empted by the actual cause c1. [19, p. 567]

In AF4, “in(C)2→ out(B)” represents that in(C) is a potential cause of out(B)
but is preempted by the actual cause in(A).

5. Discussion

Lewis [18] argues modal interpretation of sentences in terms of counterfactuals. Let⊥ be

a sentential constant false at every possible world. Then, 2ϕ
def
= (¬ϕ2→ ⊥) and 3ϕ

def
=

¬2¬ϕ. We can construct a similar interpretation of arguments using counterfactuals. Let
⊥ be an inconsistent argument which is always false. Given an argument A, define

5There are arguments against the transitivity of causation [16].



Table 1.

Axioms Propositions in this paper

(A1) all truth-functional tautologies
(A2) (p > q) ∧ (p > r) ⊃ (p ⊃ q ∧ r) Prop. 8
(A3) p > > universality of semantics
(A4) p > p Prop. 1
(A5) ((p > q) ∧ (q > p)) ⊃ ((p > r) ⊃ (q > r)) Prop. 7
(A6) p ∧ q ⊃ (p > q) Prop. 2
(A7) (p > q) ⊃ (p ⊃ q) (not addressed)
(A8) (p > r) ∧ (q > r) ⊃ (p ∨ q > r) (not addressed)
(A9) (p > q) ∧ ¬(p > ¬r) ⊃ (p ∧ r > q) (not addressed)

2`(A)
def
= `(A)2→ in(⊥) and 3`(A)

def
= `(A)26→ in(⊥).

For instance, “2in(A) = out(A)2→ in(⊥)” (an argument A is necessarily accepted
iff inconsistency would be accepted if A were rejected). We use such argumentative rea-
soning in daily life. For example, put the argument A as “

√
2 is an irrational number”.

Then, the validity of the argument is proven by showing inconsistency under the as-
sumption that

√
2 were a rational number. A modal interpretation of arguments provided

above introduces yet another connection between argumentation and modal logic, which
is different from existing studies such as [3,9,15].

Lewis [18] introduces an axiomatic system of counterfactuals, which is reformu-
lated by Gärdenfors [13] as (A1)–(A9) in Table 1 where > means a conditional operator.
Gärdenfors shows that the above nine axioms together with two inference rules, (R1)
Modus Ponens and (R2) “if q ⊃ r is a theorem then (p > q) ⊃ (p > r) is a theorem”,
provide the same logic of conditionals as Lewis’s counterfactuals. Some correspondences
between the axioms and the propositions presented in this paper are presented in Ta-
ble 1. In the table, if we interpret the conditional “in(A)2→ >” or “out(A)2→ >”
as the consistency (i.e., existence of an extension) of AF c

+A or AF c
−A, the axiom (A3)

also holds in argumentation semantics which is universally defined. Due to space limi-
tations, we do not address properties corresponding to (A7)–(A9) in this paper. It would
be an interesting research topic to formulate counterfactuals using an instantiated AF in
propositional logic and verify those axioms.

Computational complexity of counterfactual reasoning in AF is derived by Def-
inition 7. Given an argumentation framework AF , the problem of deciding whether
a counterfactual conditional in(A)2→ `(B) (resp. in(A)3→ `(B)) holds or not
in AF is equivalent to deciding whether L(B) = ` in every (resp. some) labelling
L of AF c

+A. Likewise, the problem of deciding whether a counterfactual conditional
out(A)2→ `(B) (resp. out(A)3→ `(B)) holds or not in AF is equivalent to deciding
whether L(B) = ` in every (resp. some) labelling L of AF c

−A. Therefore, complexities
of counterfactual reasoning under the operator 2→ (resp. 3→) are equivalent to those
of skeptical (resp. credulous) reasoning of an argument under argumentation semantics.
Then we can apply the complexity results of argumentation semantics reported in [12].

As stated in the introduction, counterfactual reasoning is widely used in dialogue or
dispute, so the proposed framework has potential application to realizing counterfactual
reasoning in dialogue systems based on formal argumentation. Counterfactuals are also
used in diagnosis in which assumptions are introduced for explaining the observed mis-



behavior of a device [14]. For instance, we experimentally know that if a car did not start
then the car battery might be dead. The situation is represented by in(A)3→ in(B)
where A is “A car does not start” and B is “The car battery is dead”. One morning I
found that my car does not start. Then, by in(A) and the above counterfactual sentence,
I conclude by modus ponens that in(B) might be the case. Thus, counterfactuals could
be used for analytic tools in AF. Counterfactual reasoning would have connection to dis-
honest reasoning. When one wants to have a desired outcome which would be achieved
not by telling true belief but by false belief, one has an incentive to lie. In this case, one
would reason counterfactually. For instance, suppose a child, Susie, who watches TV in
the living room. Mom asks whether she did her homework. Susie considers that Mom
would permit her watching TV if she finished her homework while she did not finish it.
The situation is represented by the counterfactual conditional in(A)2→ in(B) with
A = “Susie finishes her homework” and B = “Mon permits watching TV”. To have the
desired resultB, Susie lies to her Mom: “Yes, I did my homework”. Dishonest reasoning
is used in a debate game which provides an abstract model of debates between two play-
ers [26]. In debate games, two players have their own argumentation frameworks and
each player builds claims to refute the opponent. A player may provide false or inaccu-
rate arguments as a tactic to win the game. Counterfactual reasoning would be used for
building false arguments in a game.

We finally remark some related works. Booth et al. [6] introduce conditional accep-
tance functions that account for dynamic aspects of argument evaluation. Using the func-
tion, one can reason counterfactually that “what if an argument A was not accepted?”.
They show that such counterfactual reasoning is useful to distinguish argumentation
frameworks which have different topological structures but have the same extensions [7].
They characterize counterfactuals as nonmonotonic inference in a manner different from
ours. Counterfactual reasoning is closely related to theory change and belief revision
[13,22]. Rotstein et al. [25] study argumentation theory change in abstract argumenta-
tion framework. They introduce argument change operators which expand/contact the set
of arguments to warrant a particular argument. Baumann and Brewka [1] consider the
problem of modifying AF in a way that a desired set of arguments becomes an extension.
Compared with these studies, our interest is not in the change of AF to warrant or enforce
desired arguments, but we focus on the effect of counterfactual change of a particular
argument. Boella et al. [4,5] consider the effect of adding/removing arguments or attack
relations under the grounded semantics. Their primary interest is on the invariance of the
argumentation semantics when arguments or attack relations have been added/removed.
This is in contrast with counterfactuals in AF which consider possible changes by intro-
ducing arguments and removing attack relations. Cayrol et al. [10] study the effect of
an addition of an argument on the outcome of the grounded/preferred semantics. They
analyze how extensions of an AF change by adding a new argument that may interact
with existing arguments. The study focuses on dynamics of extensions in AF, rather than
causal changes between particular arguments. Bochman [2] studies a connection between
argumentation and causal reasoning. He argues that causal reasoning is viewed as a kind
of argumentation by interpreting that “A produces B iff ¬B attacks A.” This is different
from our formulation of causal dependencies in AF. He does not argue how counterfac-
tuals are characterized in his logic. Pearl [23] introduces a causal model which encodes
propositional sentences that deal with causal relationships. A causal model is associated
with a directed graph called a causal diagram which is used for representing and rea-



soning with counterfactuals [23,16]. The vertices in causal diagrams are propositional
variables whose truth values are determined by a set of functions defined over those vari-
ables. Arcs in causal diagrams represent input-output relations between variables in those
functions. Like argumentation graphs, causal diagrams are used for structural analyses
of counterfactuals, while two graphs encode the problem in different ways.
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