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Abstract. Among the abundance of generalizations of abstract argumentation
frameworks, the formalism of abstract dialectical frameworks (ADFs) proved to be
powerful in modelling various argumentation problems. Implementations of rea-
soning tasks that come within ADFs struggle with their high computational com-
plexity. Thus methods simplifying the evaluation process are required. One such
method is splitting, which was shown to be an effective optimization technique
in other nonmonotonic formalisms. We apply this approach to ADFs by providing
suitable techniques for directional splitting (allowing links only from the first to the
second part of the splitting) under all the standard semantics of ADFs as well as
preliminary results on general splitting.
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1. Introduction

Among the study of argumentation in artificial intelligence [1,2], abstract argumentation
frameworks (AFs) [3] have proven suitable to model and solve argumentation problems.
Their limitations in terms of expressibility have been overcome by several enriched for-
malisms (e.g. [4,5,6]). In particular, abstract dialectical frameworks (ADFs) [7,8] consti-
tute a very powerful generalization of AFs. In ADFs a propositional formula is assigned to
each argument as acceptance condition instead of restricting the relation between argu-
ments to simple attacks. This allows to capture several methods of preferential reasoning
with ADFs such as [9,10]. Recently several new and alternative semantics for ADFs have
been proposed [11,12].

Reasoning tasks within ADFs such as determining the results of applying a specific
semantics are computationally hard (for an extensive complexity analysis we refer to
[13]). This already suggests investigation of optimization techniques. In this work we
follow the idea of splitting [14]: First, a given ADF is divided into several partitions.
Then the results of the first part are computed followed by a transformation of the second
part according to these results. After an iteration of this procedure through all parts the
composition of all partial solutions gives the solution of the whole ADF. This divides
one, possibly extensive, reasoning task into more but smaller subtasks and therefore re-
duces the computational effort of the overall process. This approach has already been
studied for AFs [14,15] and logic programs [16], and turned out to achieve considerable
optimization for AFs in an empirical evaluation [17]. Similar approaches were presented
in [18] and [19]. An investigation on the application of splitting techniques under the
ADF-semantics presented in [8] is important in various aspects:

• First, any implementation, such as [20], can make use of splitting results as a possi-
ble means to limit the search space of computation.



• Second, results on splitting ADFs are significant when dynamic aspects of argumen-
tation come into play. Since argumentation is a dynamic process there is the need to
handle situations where additional information is added or existing knowledge is re-
vised. With splitting results at hand one has the possibility to reuse already computed
(partial) results and only deal with the changed part of the framework.

• Finally, our results give some insights about how “local” semantics of ADFs are, that
is whether the acceptance of an argument depends only on directly linked arguments
or not. For AFs this is called directionality [21] and has been thoroughly investigated
together with other basic principles of argumentation semantics [22].

The main contributions of the paper are presented as follows:

• Section 2 recalls the formal foundations of ADFs and completes the picture of rela-
tions between the semantics from [8].

• In Section 3 we provide positive results for directional splitting for all of these se-
mantics. Directional splitting allows partitions of ADFs only in such a way that links
appear only from one part to the other. Our results show that for all semantics direc-
tional splitting allows an incremental computation of the results of the semantics.

• Finally, Section 4 contains preliminary results on general splitting, allowing arbi-
trary partitioning of a given ADF. We show that under two-valued models, any ADF
can be transformed to an equivalent ADF which then allows for directional splitting.
For admissible interpretations we provide a procedure for general splitting.

2. Preliminaries

An argumentation framework (AF) is a directed graph where nodes represent arguments
and a directed edge stands for an attack from the predecessor node to the successor node.
The intended meaning of these attacks includes that an argument can only be accepted if
all attacking arguments are not accepted. The strong limitation caused by this modeling
choice is overcome by abstract dialectical frameworks (ADFs) by providing each argu-
ment with an acceptance condition. The acceptance of argument a is still based on the
parents of a (denoted a−D in some ADF D). Now with ADFs, the acceptance condition of
an argument a is a total function assigning to each subset of a−D one of the truth values
t and f. Given a subset B ⊆ a−D , the intended reading of Ca(B) = t (resp. Ca(B) = f) is
that a should be accepted (resp. should not be accepted) given that each argument in B is
accepted and each argument in (a−D \B) is not. In the remainder of this section we recall
the formal foundations of ADFs and its semantics, for more details we refer to [7,8].

Definition 1. An abstract dialectical framework is a tuple D = (A,L,C) where

• A is a set of arguments (statements, positions),
• L⊆ A×A is a set of links, and
• C = {Ca | a ∈ A} is a set of total functions Ca : 2a−D 7→ {t, f},

with a−D = {b ∈ A | (b,a) ∈ L}. Ca is called acceptance condition of a.

It seems natural to represent the acceptance condition of an argument a by a proposi-
tional formula over a−D . For the sake of convenience we will mostly use this propositional
representation of ADFs.
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Figure 1. ADF D addressed in Examples 1 and 2.

Definition 2. In an ADF D = (A,L,C), the propositional acceptance condition of argu-
ment a ∈ A, denoted as ϕD

a (or just ϕa if no ambiguity arises), is a formula of the form

θ := x ∈ a−D | > | ⊥ | ¬θ | (θ ∧θ) | (θ ∨θ) | (θ ↔ θ),

where each argument in a−D appears as atom in ϕD
a . By ϕD

a [b/θ : c(b)] we denote the
replacement of each occurrence of atom b fulfilling condition c(b) by a formula θ in ϕD

a .

Note that for any ADF D=(A,L,C), the set of links L is immediate by the acceptance
conditions C = {ϕa | a ∈ A}. The set of ingoing links a−D for each argument a coincides
with the atoms in ϕa. Therefore we will frequently identify an ADF D by a set of pairs,
where one pair 〈a,ϕa〉 stands for an argument together with its propositional acceptance
condition. AD is the set of all arguments of D and LD will denote the set of links of D
implicitly given by the pairs, i.e. LD = {(x,a) | a ∈ AD,x is an atom in ϕa}.

Semantics of ADFs provide rules for the acceptance of arguments. Possible candi-
dates for the outcome of applying a semantics to an ADF are interpretations.

Definition 3. Given an ADF D = (A,L,C), a two-valued interpretation is a mapping
v : A 7→ {t, f}. For an interpretation v, the set vt = {a ∈ A | v(a) = t} denotes the unique
extension associated with v.

Given an argument a, its propositional acceptance condition ϕa, and a two-valued
interpretation v, v(ϕa) is the result of the evaluation of ϕa under standard semantics of
propositional logic, with the truth values of the propositional atoms given by v.

The semantics to be presented in Definitions 4 and 7 have been shown to be proper
generalizations of AF-semantics [7,8].

Definition 4. Let D be an ADF. A two-valued interpretation is

• conflict-free iff for all a ∈ vt it holds that v(a) = v(ϕa) and
• a two-valued model of D iff for all a ∈ AD it holds that v(a) = v(ϕa).

In the remainder of this paper we will use cf(D) and val2(D) to denote the sets of
conflict-free interpretations and two-valued models of ADF D, respectively.

Example 1. The ADF D = {〈a,¬b〉,〈b,¬a〉,〈c,¬b∧d〉,〈d,c〉} is depicted in Figure 1.
The implicit links LD are represented by directed edges. The extensions associated with
the conflict-free interpretations of D are /0, {a}, {b}, {c,d}, and {a,c,d} and the exten-
sions associated with the two-valued models of D are {a}, {b}, and {a,c,d}.

Most of the remaining semantics we consider in this paper abandon the need of a
definite decision between acceptance and non-acceptance (t and f) of an argument by
being based on Kleene’s strong three-valued logic [23].



Definition 5. Given an ADF D, a (three-valued) interpretation is a mapping v : AD 7→
{t, f,u}. We denote vx = {a ∈ AD | v(a) = x} for x ∈ {t, f,u}.

A three-valued interpretation assigns a truth value true (t), false (f), or unknown (u)
to each argument. The three truth values are partially ordered by ≤i according to their
information content with the only pairs in <i being u <i t and u <i f, following the
intuition that true and false contain more information than unknown. Further we define
the meet operation u as tu t = t, fu f = f and u otherwise, which can be read as the
consensus of truth values.

This ordering can easily be transferred to interpretations. For (three-valued) inter-
pretations v1 and v2 of some ADF D it holds that v1 ≤i v2, i.e. v2 contains at least as much
information as v1, if and only if for all a ∈ AD, v1(a) ≤i v2(a). The meet operation u is
given by (v1u v2)(a) = v1(a)u v2(a) for all a ∈ AD.

It is easy to see that each two-valued interpretation v is also a three-valued interpre-
tation. They are the maximal elements with respect to ≤i, while a three-valued interpre-
tation mapping u to each argument is ≤i-minimal. An interpretation w extends another
interpretation v iff v ≤i w. We denote the set of all two-valued interpretations extend-
ing some three-valued interpretation v by [v]2. An element w ∈ [v]2 maps each argument
which is mapped to u by v to t or f.

The evaluation of propositional acceptance conditions under a three-valued interpre-
tation follows the truth tables of the connectives given in Figure 2.

¬
t f
f t
u u

∨ t u f
t t t t
u t u u
f t u f

∧ t u f
t t u f
u u u f
f f f f

↔ t u f
t t u f
u u u u
f f u t

Figure 2. Truth tables for the three-valued logic of Kleene.

Lemma 1. Given a propositional acceptance condition θ and three-valued interpreta-
tions v1 and v2 thereof, it holds that if v1 ≤i v2 then v1(θ)≤i v2(θ).

Proof. Let θ be a propositional acceptance condition and v1,v2 three-valued interpreta-
tions with v1 ≤i v2, i.e. for each atom x in θ it holds that v1(x) ≤i v2(x). In the follow-
ing let x and y be arbitrary atoms. If θ = y or θ = ¬y, it is clear that v1(θ) ≤i v2(θ).
Let θ = x∨ y. If v1(x) = u and v1(y) ∈ {u, f}, then v1(θ) = u ≤i v2(θ). If v1(x) = u
and v1(y) = t, then v1(y) = v2(y), hence v1(θ) = v2(θ) = t. If v1(x),v1(y) ∈ {t, f}, then
necessarily v1 = v2 for x and y. The other cases follow by symmetry. Conjunction is
dual to disjunction, hence v1(θ) ≤i v2(θ) for θ = x∧ y follows. The result for general
propositional acceptance conditions easily follows by induction.

In order to introduce the remaining semantics we define the characteristic operator
ΓD they are based on:

Definition 6. Given an ADF D, the operator ΓD : (AD 7→ {t, f,u}) 7→ (AD 7→ {t, f,u})
maps three-valued interpretations to three-valued interpretations such that

ΓD(v)(a) =
l

w∈[v]2

w(ϕa).
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Figure 3. Relations between semantics. An arrow from σ to τ means that in any ADF D, σ(D)⊆ τ(D).

The operator returns, for each argument a, the consensus truth value of the evaluation
of the acceptance formula ϕa with each two-valued interpretation extending v. Moreover,
ΓD was shown to be ≤i-monotone in [7]:

Lemma 2. Given an ADF D and three-valued interpretations v1 and v2 thereof, it holds
that if v1 ≤i v2 then ΓD(v1)≤i ΓD(v2).

Definition 7. Given an ADF D, a three-valued interpretation v is

• a three-valued model of D iff for all a ∈ AD, v(a) 6= u implies v(a) = v(ϕa),
• an admissible interpretation of D iff v≤i ΓD(v),
• a preferred interpretation of D iff v is a≤i-maximal admissible interpretation of D,
• a complete interpretation of D iff v = ΓD(v),
• the grounded interpretation of D iff v is the least fixpoint of ΓD wrt. ≤i,
• a stable model of D iff v is a two-valued model of D and vt = wt, with w being the

grounded interpretation of Dv− = {〈a,ϕa[x/⊥ : v(x) = f]〉 | a ∈ vt}.

We will denote the three-valued models, admissible, preferred, complete, grounded
interpretations, and stable models of an ADF D as val3(D), adm(D), pref(D), com(D),
grd(D), and stb(D), respectively.

Example 2. Again consider the ADF D depicted in Figure 1. The admissible interpreta-
tions {v1, . . . ,v8} coincide with the three-valued models: v1 = {a 7→ u,b 7→ u,c 7→ u,d 7→
u}, v2 = {a 7→ t,b 7→ f,c 7→ u,d 7→ u}, v3 = {a 7→ t,b 7→ f,c 7→ f,d 7→ f}, v4 = {a 7→ t,b 7→
f,c 7→ t,d 7→ t}, v5 = {a 7→ f,b 7→ t,c 7→ u,d 7→ u}, v6 = {a 7→ f,b 7→ t,c 7→ f,d 7→ u},
v7 = {a 7→ f,b 7→ t,c 7→ f,d 7→ f}, v8 = {a 7→ u,b 7→ u,c 7→ f,d 7→ f}. Further ob-
serve that com(D) = {v1,v2,v3,v4,v7,v8}, pref(D) = {v3,v4,v7}, grd(D) = {v1}, and
stb(D) = {v3,v7}.

Proposition 3. The relations between semantics depicted in Figure 3 hold.

Proof. We show that, for any ADF each three-valued model is an admissible interpreta-
tion. The other relations were shown in [8]. To this end consider an arbitrary ADF D and
let v ∈ val3(D) and a ∈ AD. If v(a) = u obviously v(a)≤i ΓD(v)(a). So let v(a) 6= u. By
assumption, v(a) = v(ϕa). Now note that for each w ∈ [v]2 it holds that v ≤i w. Hence
we know by Lemma 1 that v(ϕa) ≤i w(ϕa). Therefore v(ϕa) ≤i

d
w∈[v]2 w(ϕa) and con-

sequently v(a)≤i ΓD(v)(a), showing that v is an admissible interpretation.

In order to present our results we will make use of the following technical concepts:
Given an ADF D and a set of arguments B ⊆ AD, the restriction of D to B is defined as
D|B = {〈a,ϕa〉 ∈ D | a ∈ B}. Note that D|B is an ADF iff ∀b ∈ B : b−D ⊆ B. Further for
interpretations v1 over A1 and v2 over A2, v1|B is the restriction of v1 to the arguments
B∩A1 and the union v1∪ v2 is an interpretation over (A1∪A2) iff (A1∩A2) = /0.
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Figure 4. Possible directional splittings of the depicted ADF.

3. Directional Splitting

The definition of the various semantics of ADFs already suggests that not every decom-
position of an ADF can be treated equivalently. In this section we focus on directional
splitting, that is, given an ADF D, a partition of the graph underlying D into two disjoint
subgraphs G1 and G2 such that there are no links from G2 to G1 in D. In other words it
is splitting “along the lines” of the strongly connected components of an ADF.

Definition 8. Let G1 = (A1,L1) and G2 = (A2,L2) be directed graphs such that A1∩A2 =
/0. Moreover let L3 ⊆ A1×A2. We call the tuple (G1,G2,L3) a directional splitting of an
ADF D = (A1∪A2,L1∪L2∪L3,C).

Figure 4 illustrates the two possible directional splittings of an exemplary ADF. Note
that any other splitting of this frameworks contains links in both directions between the
subgraphs and is therefore not directional.

Definition 9. Let G1 = (A1,L1) and G2 = (A2,L2) be directed graphs such that
(G1,G2,L3) is a directional splitting of the ADF D. Further let v be an interpretation of
D|A1

. The v-reduct of D is defined as

Dv = {〈a,ϕa[b/v(b) : b ∈ (vt∪ vf)][c/xc : c ∈ vu]〉 | a ∈ A2} ∪ {〈xc,¬xc〉 | c ∈ vu},

where xc is a newly introduced argument for each c ∈ vu.

The idea of directional splitting is to propagate truth values assigned to arguments by
an interpretation of the first part along the links to the second part. An example is illus-
trated in Figure 5. Here the dotted borderline on the left suggests the splitting (G1,G2,L3)
of ADF D with L3 = {(b,d),(c,d)}. The right part depicts the resulting ADFs D1 and Dv1 ,
where v1 = {a 7→ t,b 7→ u,c 7→ f} is a possible (complete) interpretation of D1. In the
acceptance condition ϕd the atom c (v1(c) = f) is replaced by the propositional constant
⊥ and b (v1(b) = u) by the newly introduced argument xb.

With this at hand, we are ready to formulate our first results on directional splitting.

Theorem 4. Let σ ∈ {cf,val2}, and G1 = (A1,L1) and G2 = (A2,L2) be directed graphs
such that (G1,G2,L3) is a directional splitting of the ADF D. Further let D1 = D|A1 . It
holds that

1. v1 ∈ σ(D1)∧ v2 ∈ σ(Dv1)⇒ (v1∪ v2) ∈ σ(D),
2. v ∈ σ(D)⇒ v|A1 ∈ σ(D1)∧ v|A2 ∈ σ(Dv|A1 ).
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Figure 5. Directional splitting of the ADF D on the left into the ADFs D|A1 and Dv1 , where A1 = {a,b,c} and
v1 = {a 7→ t,b 7→ u,c 7→ f} is a complete interpretation of D1.

Proof. Note that for a two-valued interpretation v the v-reduct does not contain addi-
tional arguments but is built by solely replacing atoms by truth values in the acceptance
conditions, i.e. Dv = {〈a,ϕa[b/v(b) : b ∈ A1]〉 | a∈ A2}. Hence the result follows directly
from the fact that for any acceptance condition ϕa over atoms B and any two-valued
interpretation v, it holds that v(ϕa) = v|B′(ϕa[b/v(b) : b ∈ (B\B′)], where B′ ⊆ B.

The following lemma will be useful to prove splitting results for the other semantics.

Lemma 5. Let G1 =(A1,L1) and G2 =(A2,L2) be directed graphs such that (G1,G2,L3)
is a directional splitting of the ADF D, A = A1∪A2 and D1 = D|A1 . The following holds:

1. If v1 is an interpretation of D1 and v2 is an admissible interpretation of Dv1 , then

(ΓD1(v1)∪ΓDv1 (v2))|A = ΓD ( (v1∪ v2)|A) .

2. If v is an interpretation of D, then

ΓD(v) = ΓD1(v|A1)∪
(

Γ
D

v|A1
(v′)
)∣∣∣

A2

where v′ = v|A2 ∪{xc 7→ u | c ∈ (v|A1)
u}.

Proof. 1) We need to show that for each a∈ A1, ΓD1(v1)(a) = ΓD( (v1∪ v2)|A)(a) and for
each a ∈ A2, ΓDv1 (v2)(a) = ΓD( (v1∪ v2)|A)(a). The former is trivial by the fact that for
each a ∈ A1, ϕD

a = ϕ
D1
a and a−D ⊆ A1. The latter is by the following chain of equalities,

letting a ∈ A2 and v∗1 = v1|((v1)t∪(v1)f):

ΓDv1 (v2)(a) =
l

w∈[v2]2

w(ϕa[b/v1(b) : b ∈ ((v1)
t∪ (v1)

f)][c/xc : c ∈ (v1)
u]) (1)

=
l

w∈[v2∪v∗1]2

w(ϕa[c/xc : c ∈ (v1)
u]) (2)

=
l

w∈[v2∪v1]2

w(ϕa) (3)

=
l

w∈[ (v1∪v2)|A]2

w(ϕa) (4)

= ΓD( (v1∪ v2)|A)(a) (5)



Note that (2) = (3) is by the fact that since ϕxc = ¬xc and v2 ∈ adm(Dv1) necessarily
v2(xc) = u and by definition of Dv1 , v1(c) = u. (3) = (4) is by a−D ⊆ A for any a ∈ A2.
2) Again, for a ∈ A1, ΓD(v)(a) = ΓD1(v|A1)(a) is trivial. Let a ∈ A2 and consider v′ =
v|A2 ∪ {xc 7→ u | c ∈ (v|A1)

u}. We get ΓD(v)(a) =
d

w∈[v′]2 w(ϕa[b/v(b) : b ∈ (v|A1)
t ∪

(v|A1)
f][c/xc : c∈ (v|A1)

u]) = Γ
D

v|A1
(v′)(a) by substituting t-/f-values in v|A1 directly into

ϕa and replacing atoms with u-values by other atoms which are u in v′ by definition.

In the general case of three-valued interpretations the reduct involves the introduc-
tion of additional arguments, hence the following equalities only hold under projection.

Theorem 6. Let σ ∈ {val3,adm,pref,com,grd}, and G1 = (A1,L1) and G2 = (A2,L2)
be directed graphs such that (G1,G2,L3) is a directional splitting of the ADF D. Further
let D1 = D|A1 . It holds that

1. v1 ∈ σ(D1)∧ v2 ∈ σ(Dv1)⇒ (v1∪ v2)|A ∈ σ(D),
2. v ∈ σ(D)⇒ v|A1 ∈ σ(D1)∧∃v2 ∈ σ(Dv|A1 ) : v2|A2 = v|A2 .

Proof. 1) val3: Let v1 ∈ val3(D1) and v2 ∈ val3(Dv1). We have to show (v1∪ v2)|A (a) =
(v1∪ v2)|A (ϕa) for all a ∈ AD. If a ∈ A1 this follows from a−D ⊆ A1. Let a ∈ A2
with v2(a) 6= u. We know that v2(a) = (v1∪ v2)|A (a) = v2(ϕa[b/v1(b) : b ∈ ((v1)

t ∪
(v1)

f)][c/xc : c ∈ (v1)
u]). Since ϕDv1

xc = ¬xc for all c ∈ (v1)
u, necessarily v2(xc) = u.

Hence (v1∪ v2)|A (a) = (v1∪ v2)(ϕ
D
a ).

adm,pref,com,grd: Since in any case, v2 is an admissible interpretation of Dv1 (cf. Propo-
sition 3), the result follows directly by Lemma 5.1.

2) val3: Let v ∈ val3(D). v|A1 ∈ val3(D1) is clear. Now let v2 = v|A2 ∪ {xc 7→ u | c ∈
(v|A1)

u}. We have to show that v2 ∈ val3(D
v|A1 ). For all xc where c ∈ (v|A1)

u, v2(xc) =

v2(ϕ
D

v|A1
xc ) = u holds since ϕD

v|A1
xc = ¬xc. Finally consider a ∈ A2. It holds that v(a) =

v(ϕD
a ). Since v2(xc) = u also v(a) = v2(ϕ

D
a [b/v|A1(b) : b ∈ ((v|A1)

t∪ (v|A1)
f)][c/xc : c ∈

(v|A1)
u]), i.e. v(a) = v2(ϕ

D
v|A1

a ). As v(a) = v|A2(a) = v2(a) holds, v2 ∈ val3(D
v|A1 ).

adm,pref,com,grd: Follows directly by Lemma 5.2.

Corollary 7. Let G1 = (A1,L1) and G2 = (A2,L2) be directed graphs such that
(G1,G2,L3) is a directional splitting of the ADF D and D1 = D|A1 . It holds that

1. v1 ∈ stb(D1)∧ v2 ∈ stb(Dv1)⇒ (v1∪ v2)|A ∈ stb(D),
2. v ∈ stb(D)⇒ v|A1 ∈ stb(D1)∧ v|A2 ∈ stb(Dv|A1 ).

Proof. Follows directly by Theorem 4 (two-valued model) and Theorem 6 (grounded
interpretation).

Example 3. The ADF D on the left of Figure 5 has com(D) = {{a 7→ t,b 7→ t,c 7→ f,d 7→
f},{a 7→ t,b 7→ f,c 7→ f,d 7→ t},{a 7→ t,b 7→ u,c 7→ f,d 7→ u}}. Now consider the split-
ting (({a,b,c},{(a,c),(b,c),(b,b)}),({d}, /0),{(b,d),(c,d)}) of D. The interpretation
v1 = {a 7→ t,b 7→ u,c 7→ f} is complete for D1. The v1-reduct Dv1 is depicted on the
very right. The only complete interpretation of Dv1 is v2 = {d 7→ u,xb 7→ u} and indeed
(v1∪ v2)|AD

∈ com(D). It is easy to verify that this also holds for the reduct based on any
other complete interpretation of D1.



4. General Splitting

So far we have only dealt with splittings of ADFs along the lines of strongly connected
components. However, the graph induced by an ADF may not be sparse enough to be
suitable for directional splitting. In the following we give some preliminary results on
general splitting of ADFs. This is identified just by a subset of the arguments of an ADF,
which shall represent the first part of the split ADF.

Definition 10. Given an ADF D we call a set S⊆ AD a general splitting of D.

First we consider two-valued models. Here we can clear the way for directional
splitting by transforming a given ADF while preserving equality with respect to two-
valued models.

Definition 11. Given an ADF D, let L ⊆ LD be a set of links in D. We define L− = {b |
(b,a) ∈ L}. Moreover, the L-elimination of D is defined as

DL ={〈a,ϕa[b/xb : b ∈ L−]〉 | a ∈ AD} ∪

{〈xb,xb〉 | b ∈ L−} ∪ {〈ω(DL),¬

( ∧
b∈L−

b↔ xb

)
∧¬ω(DL)〉},

where ω(DL) and xb for each b ∈ L− are newly introduced arguments.

Lemma 8. Let D be an ADF and L ⊆ LD. For any two-valued model v ∈ val2(DL) it
holds for any b ∈ L− that v(b) = v(xb).

Proof. Let v ∈ val2(DL) and assume towards a contradiction that v(b) 6= v(xb). If
v(ω(DL)) = t then v(ϕω(DL)) = f and if v(ω(DL)) = f then v(ϕω(DL)) = t, hence v cannot
be a two-valued model of DL.

The L-elimination indeed preserves equality of two-valued models under projection:

Proposition 9. Given an ADF D, for any L⊆ LD it holds that

1. v ∈ val2(DL)⇒ v|AD ∈ val2(D),
2. v ∈ val2(D)⇒∃v′ ∈ val2(DL) : v = v′|AD

.

Proof. 1) Let v∈ val2(DL) and a∈AD. We need to show, knowing that v(a)= v(ϕa[b/xb :
b ∈ L−]), that v|AD(a) = v|AD(ϕa). By Lemma 8 it must hold for each b ∈ L− that v(b) =
v(xb), hence v(a) = v(ϕa) and since a−D ⊆ AD, v|AD = v|AD(ϕa).
2) Consider some v ∈ val2(D) and let v′ = v∪ {xb 7→ v(b) | b ∈ L−} ∪ {ω(DL) 7→ f}.
Obviously v′(xb) = v′(ϕxb). Now consider some a ∈ AD. It holds that v(a) = v′(a) =
v(ϕa). In order to ensure v′(ϕω(DL)) = v′(ω(DL)) = f, it must hold that v′(b) = v′(xb) for
all b ∈ L−. Hence v′(a) = v′(ϕa[b/xb : b ∈ L−]), showing that v′ ∈ val2(DL).

This allows us to apply directional splitting under two-valued models along any de-
sired partition of arguments after a suitable transformation. First the transformation elim-
inating all links of one direction preserves equality of two-valued models (cf. Propo-
sition 9), and second the computation of two-valued models can be carried out in two
stages by directionally splitting the ADF (cf. Theorem 4).
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Figure 6. General splitting S = {b,c} of the ADF D on the left. The right side depicts the primary slice DS of
the splitting as well as the extended v1-reduct wrt. S where v1 = {b 7→ u,c 7→ f,xd 7→ u,xe 7→ t}.

Corollary 10. Given an ADF D, let S ⊆ AD be a general splitting of D. Further let
L = {(a,b) ∈ LD | a ∈ (AD \S),b ∈ S} and X = {xb | b ∈ L−}. It holds that

1. v1 ∈ val2(DL
∣∣
(S∪X)

)∧ v2 ∈ val2((DL)
v1)⇒ (v1∪ v2)|AD

∈ val2(D),

2. v∈ val2(D)⇒∃v1,v2 : (v1∪ v2)|AD
= v∧v1 ∈ val2(DL

∣∣
(S∪X)

)∧v2 ∈ val2((DL)
v1).

We now turn to the admissible semantics. A transformation in the fashion of Def-
inition 11 is not possible since we cannot force an interpretation to have equal truth
values for two arguments in the three-valued setting. Therefore we have to apply local
transformations on each of the sub-frameworks obtained by the splitting.

Definition 12. Given an ADF D, let S ⊆ AD be a general splitting of D. Further let B =
{b ∈ (AD \S) | ∃a ∈ S : (b,a) ∈ LD}. The primary slice of D wrt. S is defined as

DS = {〈a,ϕa[b/xb : b ∈ B]〉 | a ∈ S} ∪ {〈xb,xb〉 | b ∈ B}.

Moreover, if v is an interpretation of DS, the extended v-reduct of D wrt. S is defined as

DS,v = Dv∪{〈ω(DS,v),
∧

b∈B,v(xb)=t
b ∧

∧
b∈B,v(xb)=f

(¬b)〉}.

where the new ω(DS,v) is called insurance-argument of DS,v.

When S is a general splitting of some ADF D, all arguments not in S which have
links to S are simulated in the primary slice of D by new, self-supporting arguments.
This has the effect that these arguments can have an arbitrary truth value in an admissible
interpretation. Another additional argument in the extended reduct of D ensures that only
“valid” interpretations survive the splitting. This construction can be regarded as a kind
of guess-and-check-procedure. Figure 6 depicts a general splitting of an exemplary ADF.

Theorem 11. Given an ADF D and a general splitting S ⊆ AD thereof, let B = {b ∈
(AD \S) | ∃a ∈ S : (b,a) ∈ LD}. It holds that

1. v1 ∈ adm(DS)∧ v2 ∈ adm(DS,v1)∧ v2(ω(DS,v1)) = t⇒ (v1∪ v2)|AD
∈ adm(D)

2. v ∈ adm(D) ⇒ ∃v1,v2 : (v1∪ v2)|AD
= v ∧ v1 ∈ adm(DS) ∧ v2 ∈ adm(DS,v1) ∧

v2(ω(DS,v1)) = t



Proof. 1) Let v1 ∈ adm(DS) and v2 ∈ adm(DS,v1) such that v2(ω(DS,v1)) = t. First
observe that for any b ∈ B it holds that if v1(xb) 6= u then v1(xb) = v2(b). Now let
a ∈ S. We know that v1(a) ≤i

d
w∈[v1]2

w(ϕa[b/xb : b ∈ B]). Since by the previous ob-
servation v1(xb) ≤i v2(b) for all b ∈ B, we infer by Lemma 1 and by a−D ⊆ AD that
also (v1∪ v2)|AD

(a) ≤i
d

w∈[ (v1∪v2)|AD
]2

w(ϕa). For all a ∈ (AD \ S), (v1∪ v2)|AD
(a) ≤i

ΓD( (v1∪ v2)|AD
)(a) follows by the same reasoning as in the proof of Theorem 6.

2) Consider some v ∈ adm(D). Let v1 = v|S ∪{xb 7→ v(b) | b ∈ B} and v2 = v|(AD\S) ∪
{xc 7→ u | c ∈ (v|S)u} ∪ {ω(DS,v1) 7→ t}. We argue that v1 ∈ adm(DS) and v2 ∈
adm(DS,v1). Since ϕxb = xb it surely holds that v1(xb) ≤i ΓDS(v1)(xb). For any a ∈ S,
v1(a)≤i ΓDS(v1)(a) follows from the fact that v1(xb) = v(b) by definition. Finally Theo-
rem 6 implies that v2(a)≤i ΓDS,v1 (v2)(a) for all a∈ (AD\S), hence the result follows.

Example 4. Let D be the ADF on the left side of Figure 6 and consider its general
splitting S = {b,c}. We illustrate the computation of the admissible interpretations v =
{b 7→ u,c 7→ f,d 7→ u,e 7→ t} and v′ = {b 7→ u,c 7→ f,d 7→ t,e 7→ t} of D via the splitting
S. First of all we consider the primary slice DS and observe that v1 = {b 7→ u,c 7→ f,xd 7→
u,xe 7→ t} is an admissible interpretation thereof. Now the extended v1-reduct DS,v1 is
depicted at the very right part of Figure 6. We observe that the admissible interpretations
of DS,v1 having ω(DS,v1) 7→ t are v2 = {d 7→ u,e 7→ t,ω(DS,v1) 7→ t} and v′2 = {d 7→
t,e 7→ t,ω(DS,v1) 7→ t}. Now it indeed holds that v = (v1∪ v2)|AD

and v′ = (v1∪ v′2)|AD
.

On the other hand consider the admissible interpretation w1 = {b 7→ t,c 7→ f,xd 7→
f,xe 7→ u} of DS. We get DS,w1 = {〈d,>∧ e〉,〈e,>∨¬d〉,〈ω(DS,w1),¬d〉} and observe
that there is no w2 ∈ adm(DS,w1) with w2(ω(DS,w1)) = t. This is as expected since there
is no w ∈ adm(D) such that w(b) = t and w(c) = f.

Note that in general this does not work for the other semantics under considera-
tion. Nevertheless a procedure for gradually computing the preferred interpretations is
derivable from Theorem 11. This can be achieved by using the splitting procedure to
determine the admissible interpretations and finally selecting the ≤i-maximal elements.

5. Discussion

In this paper, we provided splitting results for ADFs under the semantics proposed in
[8], namely two-valued, stable, and three-valued models and admissible, preferred, com-
plete, and grounded interpretations. To summarize, the splitting results show that, given
a semantics σ , the results σ(D) of the split framework D can be determined in the fol-
lowing way based on the splitting into A1 and A2: (1) build the ADF D1 based on A1; (2)
compute σ(D1); (3) transform D according to σ(D1) to get D2; (4) compute σ(D2) to
get (5) σ(D) = σ(D1)∪σ(D2). Since all operations involved in the splitting can be done
efficiently, this lays the basis for an optimization of the evaluation process of ADFs.

Future work includes investigating (general) splitting under the remaining semantics
of [8] as well as under the new semantics based on approximation operators [13] and
extensions [12]. Moreover, an empirical evaluation is planned in order to verify to which
extent an optimization can be achieved by splitting techniques. While directional splitting
is very likely to bring considerable savings, the benefits of general splitting are uncertain
at this point. Finally, current [20] and new implementations could make use of the results
in order to limit search space.
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