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Abstract Abstract dialectical frameworks (ADFs) constitute a recamd power-
ful generalization of Dung’s argumentation frameworks (ARg)ere the relation-
ship between the arguments is specified via Boolean formukssemR results have
shown that this enhancement comes with the price of higher exityplcompared
to AFs. In fact, acceptance problems in the world of ADFs camére even for
the third level of the polynomial hierarchy. In order to implerheeasoning prob-
lems on ADFs, systems for quantified Boolean formulas (QBF<g) #na suitable
engines to be employed. In this paper we present QBF encodimgeF prob-
lems generalizing recent work on QBFs for AF labellings. Qwraglings not only
provide a uniform and modular way of translating reasoninglvs to QBFs, but
also build the basis for a novel system. We present a protatypkementation for
the admissible and preferred semantics and evaluate itspenfice in comparison
with another state-of-the-art tool for ADFs.
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1. Introduction

Since its invention by Dung [1], abstract argumentationstitutes one of the main re-
search branches for computational models of argument.biyietiee conflict resolution
between arguments is done by abstracting away from the angishtontents, yielding
a simple yet powerful framework for reasoning used as a ca@elin many argumen-
tation tasks and applications. Although very general, Driaggumentation frameworks
(AFs) do not directly support modelling more complex intdi@ns between arguments.
For this and similar issues, several extensions of AFs haea Iproposed to date (e.g.
those presented in [2,3,4]), one of the most general beiagdhabstract dialectical
frameworks (ADFs) [5]. In this last framework, acceptanoaditions in the form of
arbitrary Boolean formulas are associated to every argurReaper generalizations of
Dung’s semantics have been given in [6].

Various reasoning tasks can be defined on abstract argumarframeworks, some
of the central ones being those that evaluate the “accdipfalmf an argument with
respect to a given framework and semantics. Already for Afast of the reasoning
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tasks have been shown to suffer from high computational texitp [7]. For ADFs, the
complexity of many of the main reasoning tasks with respetite generalized semantics
jump one level of the polynomial hierarchy [8], resultingseme of the reasoning tasks
even being on the third level of the polynomial hierarchy.

To deal with this high complexity, naive implementations ADFs are not promis-
ing. Instead, one should aim at reducing the tasks in guegitisome other suitable lan-
guage for which sophisticated systems already exist. snvtbirk we follow this idea and
present translations of some of the main reasoning taskseddfor ADFs into the satisfi-
ability problem of quantified Boolean formulas (QBFs). QB¥fs an extension of propo-
sitional logic, allowing for quantification over propositial atoms. Its associated satisfi-
ability problem (QSAT) is complete for PSPACE while typesQBFs classified accord-
ing to the structure of quantification provide us with conleroblems for each level of
the polynomial hierarchy. These results indicate thataeiag problems for ADFs can
be efficiently transformed into QSAT problems with a certairantifier structure. Em-
ploying the framework of QBFs thus allows for uniform traatgns of ADF reasoning
tasks. Moreover, these translations can be done in a mamdst‘'sensitive” to the in-
herent complexity of the reasoning tasks. Finally, indregly efficient solvers for QSAT
(see, for example, the results presented in [9]) can be usquidctical realizations.

On the theoretical side, our work continues the line of ofigtilnat has been initiated
for Dung style argumentation frameworks in [10] and [11]bbth of these works, reduc-
tions of the problems of evaluating Dung style AFs into théirsg of quantified Boolean
logic are given. The more recent work by Arieli and Caminadgarticular, which is
based on a so called “labelling approach” to defining the s¢icsmof AFs presents some
parallels with the approach followed in [6] to define the setita for ADFs. Thus this
work has been particularly influential for the approach wi¥ to give encodings for
the reasoning problems defined for ADFs.

Since we also present and give a first assessment of the pearioe of a prototype
system based on the encodings presented in this work, froractiqal perspective our
work can be placed among “reduction-based approachest¢lifjplementation of ar-
gumentations systems. In particular, we give some firsshastto the potential benefits
of a QBF based implementation approach for reasoning on ADFegards to the sys-
temDI AMOND[13], which is the only other comparable ADF system knowng@und is
based on reductions to the language of Answer-Set PrognagnfASP).

We briefly summarize the main contributions of our work:

1. We provide “complexity-sensitive” encodings of the maéasoning problems
defined for ADFs (evaluation, credulous acceptance, stapicceptance) with
respect to some of the major semantics (two valued modetsisaible, com-
plete, preferred, grounded, stable) in the context of QBFs.

2. We present a prototype software system for reasoning dasAiased on the en-
codings we provide in this work and report on preliminary esments compar-
ing our prototype system with the ADF systé&hAMOND.



2. Background
2.1. Quantified Boolean Formulas

We recall the necessary background of Boolean logic andtifjieghBoolean formulas
(QBFs) [14]. Quantified Boolean logic is an extension to siponal logic.

The basis of propositional logic is a set of propositionalalales &, to which we
also refer to as atoms. Propositional formulas are builtsaglufrom the connectives
A, V,—, <> and—, denoting the logical conjunction, disjunction, (matBrienplication,
equivalence and negation respectively. As for truth coristave useT for the value
true and_L := —T for false. QBFs additionally use the universal quantifieand the
existential quantified. If ¢ is a (quantified) Boolean formula, theédp¢ is a QBF,
with Q € {V,3} andp € &2. QBFs may be nested using the logical connectives. Fur-
therQ{p1,..., pn}¢ is a shortcut foQp; - - - Qpn¢. The order of variables in consecutive
quantifiers of the same type does not matter. We define simalshfar implication and
equivalencep — ¢':=—-¢ V¢’ andd <> ¢’ := (¢ — ¢')A (¢’ — ¢).

A propositional variablep in a QBF ¢ is free if it does not occur within the scope
of a quantifierQp and bound otherwise.  contains no free variable, thehis said
to be closed and otherwise open. Further we will wiite/ ] to denote the result of
uniformly substituting each free occurrencepofvith ¢ in the formulag.

An interpretatiorv &2 — {t,f} defines for each propositional variable a truth as-
signment. We sometimes explicitly highlight thavas defined on a seX C 4. The
evaluation on atoms generalizes as usual to arbitrary flagnGiven a formulap and
an interpretatiorv,then¢ evaluates to true under(V satisfiesp or vV is a model of¢,
denoted by = ¢) if one of the following holds, wittp € & and QBFsy, i ands,.

e ¢ =pandvip) =t;

e p=T;

e ¢ =~ andy does not evaluate to true under ~

e ¢ = Yn A Yr and bothyy andys, evaluate to true under ~

e ¢ = ynV Ypr and one offy andyr evaluates to true under ~

e ¢ =3JpyY and one ofy[p/T] andy|p/L] evaluates to true under ~
e ¢ =VpyY and both[p/T] andy[p/L] evaluate to true undet ~

We extend the evaluation functiartd formulas, i.ev(¢) is the evaluation o underv.

Normal forms of (quantified) formulas play an important réde theoretical and
practical purposes. For unquantified formulas a well-knaemmal form is the conjunc-
tive normal form (CNF). A formula is in CNF if it is a conjunoti of disjunctions of lit-
erals. A literal is either an atom or a negated atom. Traiosigif arbitrary Boolean for-
mulas to CNF are possible in polynomial time via a transfaromegiven by Tseitin [15].

A well-known normal form for QBFs is the prenex normal forniN{®. A QBF ¢ is
in PNF if ¢ is of the formQy, ..., Qny with Q; € {V,3} for 1 <i < nandy a quantifier-
free formula. Ify is in CNF, theng is in prenex conjunctive normal form (PCNF). The
computational complexity of deciding whethgeis satisfiable depends on the prefix type.
Every propositional formula has the prefix typg = Mg. Let ¢ be a closed QBF with
prefix typeZ; (respectively[1;) andX a set ofm > 0 propositional variables. Then the
formulavX¢ (respectivelydX¢) is of typel;, 1 (respectively; ;) fori > 0.

We assume familiarity with the complexity classes P, NP aidRe We also make
use of the polynomial hierarchy, that can be defined (usiaglerTuring machines as su-
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perscript) as followszf = N§ =P, 5" | = N[=> nh, = coNPY fori > 0. In general,
deciding whethep is satisfiable iilf complete if¢ has prefix typey and otherwise if

¢ has prefix typdly, then the problem iEIE complete k> 1).
2.2. Abstract Dialectical Frameworks

An abstract dialectical framework (ADF) is a directed grapose vertices represent
statements which can be accepted or not. The links reprdependencies: the status of
a nodes only depends on the status of its parents (denp&dntgs)), that is, the nodes
with a direct link tos. In addition, each nods has an associated acceptance condition
Cs specifying the conditions under whigcan be accepteds is a function assigning

to each subset gbarentgs) one of the truth values, f. Intuitively, if for someR C
parentgs) we haveCs(R) =t, thenscan be accepted provided the nodeR are accepted
and those irparentgs) \ R are not accepted.

Definition 1. Anabstract dialectical framewoik a tuple D= (S L,C) where

e Sis a set of statements (positions, nodes),

e L C Sx Sisasetoflinks,

e C={Cs}scsis a set of total functionsC Qparentss) _ {t,f}, one for each state-
ment s. Gis called acceptance condition of s.

In many cases it is convenient to represent the acceptamcktiomsC as a collec-
tion {¢s}scs of propositional formulas. This leads to the logical repraation of ADFs
we use in this paper where an ADFis a pair(S,C) with the set of linksL implicitly
given as(a,b) € L iff a appears inpy,.

We consider ADF semantics as defined in [6]. A semarticgssigns to an ADF
D a collection of two- or three-valued interpretations, deddy o (D). To distinguish
between interpretations of ADFs and QBFs we us& for QBF interpretations and
v,w for interpretations of ADFs. For we consider in this paper admissible, complete,
grounded, preferred, two-valued and stable semantics ¢fsAll/e denote the semantics
by adm com grd, prf, modandsth

The interpretations map statements to truth values. Wgugai} as truth values,
denoting true, false and undecided respectively. The ttitgle values are partially or-
dered by<; according to their information content: we hawe<;jt andu <; f and no
other pair in<;. The information ordering<; extends in a straightforward way to in-
terpretationss, vo over Sin thatvy <j v, iff vi(s) <j v(s) for all s€ S. A three-valued
interpretationv is two-valued if all statements are mapped to either trueatsef For
a three-valued interpretation we say that a two-valued interpretatisnextendsv iff
v <j w. This means that all statements mapped tuy v are mapped to or f by w. We
denote byjv], the set of all two-valued interpretations that extend

For an ADFD = (S,C), s€ Sand a three-valued interpretationthe characteristic
functionl'p(v) =V is given by

tif w(¢s) =t for all w € [v]»
V(s) =< fif w(gs) =T for all w e [v]2
u otherwise
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Figure 1.: ADF example

Table 1.: Complexity results for semantics of ADFs.

o | adm com prf grd | mod stb
Creds | 25-¢c  25-¢c  35-c coNP-c| NPc -
Skepty | trivial coNP-c TM5-c  coNP-c| coNP-c M5-c

That is, the operator returns a three-valued interpretati@pping a statemesto t, or
respectivelyf, if all two-valued interpretations extendingevaluategs to true, respec-
tively false. If there arevi, w; € V]2, s.t.wi(¢s) =t andwy(ds) = f, then the result is.
Note that the characteristic function is defined on thrdaedinterpretations, while we
evaluate acceptance conditions under two-valued intejiwas (two-valued extensions
of three-valued interpretations).

Definition 2. Let D= (S L,C) be an ADF. A three-valued interpretation v is

inadm(D) if v <; Fp(v);
in comD) if v="Tp(v);
in grd(D) if v € comD) and there is no ve com(D) with w <; v;
in prf (D) if v e admD) and there is no we adm(D) with v <; w.

For any ADF we have that all preferred interpretations aregete and all complete
interpretations are admissible [6]. Theod andstb semantics rely on two-valued inter-
pretations. A two-valued interpretatioris a model of an ADB = (S C) if v(s) = v(¢s)
for all se S. Stable models are defined via a reduct.

Definition 3. Let D= (S L,C) be an ADF with C= {§s}ss. A two-valued model v of D
is a stable model of D iff f= {s€ S| v(s) =t} equals the statements set to true in the
grounded interpretation of the reduced ADF B (E,,L",C"), where Y = LN (E, x Ey)
and for s E, we setpy = ¢s[b/f : v(b) =f].

In Figure 1 we see an example ADF= ({a,b,c},C). The acceptance conditions
are shown below the statements. This ADF has three compltgpretationsy;, v
andvs with vi(a) = t, vi(b) = vi(c) = u, v»(a) = vo(b) = vo(c) =t andvz(a) =t,
vz(b) = v3(c) = f. Furtherv; is the grounded interpretation &f, both v, andvs are
preferred interpretations and two valued modelBoOnly v; is a stable model db.

We recall two important reasoning tasks on ADFs for a seroauati A statement
sis credulously accepted in an AOP for o if sis true in at least ong € o(D). The
corresponding decision problem is denoted(wyd,. If sis true in allv € o(D), then
it is skeptically accepted iD w.r.t. g, the decision problem denoted B¥epts. The
computational complexity of reasoning in ADFs is summatizeTable 1. The results
were shown in [6,8].



3. Encodings

In this section we present our encodings of reasoning task&DFs in QBFs. We de-
velop for an ADF(S,C) and a semantice a defining encodingdenoted byé;[S CJ.
&5[S C| is a QBF whose models correspond to thterpretations of the ADES,C).

We begin with some preliminaries. For ease of presentatienvill slightly abuse
our notation and use for an ADP = (S,C) the statements i also as propositional
variables. To encode expressions about three valued iatatijpns as QBFs we follow
the procedure that has already been used in [11] to encodesskpns about (three val-
ued) labellings for AFs. Specifically, we assume that forggetSof propositional vari-
ables representing statements of some ADF the alphabet BE@Bo contains the set
S :={s” | se SfuU{s” | s S} of signed variables. The intended meaningofs that
sis accepted and” thatsis rejected under some interpretation. Intuitively, aestagnt
is undecided if botls® ands® are false in a model.

Since the definitions of semantics of ADFs often refer to sshibterpretations (e.g.
the extensions of a given interpretation) we also use disg®ts of propositional vari-
ables to implicitly refer to these different interpretaisoin our encodings. We distin-
guish the different sets by “priming” the variables $hi.e. S := {S' | s€ S}. Prim-
ing an already primed set adds another prime, €9’ = {s’ | s€ S}. The renaming
via primes is straightforwardly extended to formulas arnd sé formulas, i.eg’ is ob-
tained by replacing all variablesin ¢ by s'. Similarly for an ADFD = (S C) we define
C' :={¢’}scs. If we apply both signing and priming, then priming takesge@ence, i.e.
S,={s“|seStu{s”|sec s}

ADF semantics are based on three or two truth values. Siece #re four possible
truth value assignments for a statemewia s®,s° € S3, we need to restrict attention to
coherentinterpretations for QBFs, which exclude the possibility éomodel to satisfy
boths® ands®.

Definition 4. Let S be a set. A two valued interpretatidis coherenbn S if there is no
s€ S such thaf(s”) =t andV(s”) =t.

We now formally define the correspondence we require of théetse’ = £5[S C]
andv € o(D) for an ADFD = (SC) and a semantics.

Definition 5. Let D= (S,C) be an ADF. We define two concepts of correspondences. We
say that a two valued interpretationon S corresponds totao valuedinterpretation v

on S, denoted a&=sV if v(s) = V(s) for all s € S. A coherent two valued interpretation

¥ on S corresponds to ghree valuednterpretation Von S, denoted ag =g, V' if the
following three conditions are met:

a) V(s)=tifandonly if?(s®) =t andV (s°) =f;
b) V(s) =fifand only if¥(s?) =f andV(s”) =t; and
c) V(s) =uifand only if¥/(s?) =f andV/(s”) =f.

That is, if =gV, thenv'encodes a two valued interpretatioand we directly com-
pare variables is. Otherwise ifV" =g, V, thenV’ encodes a three valued interpretation
on Sand the correspondence is formally over the aton&;inVe extend these notions
to sets of models of QBFs and interpretations of ADFs asvalld_et? be a set of
QBF models# be a set of (two or three valued) interpretations Xnd {S S3}. Then
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¥V =x W iff (i) for eachv e ¥ there is aw € #/, s.t.v=x w and (ii) for eachw € #
thereis av’e ¥, s.t.Vv=yx w.

The encodings we present are all constructed following #meesgeneral strategy.
For an ADFD = (S,C) we define a QBRS;[S C] with free variables inS; for o €
{admcomprf,grd} andS for o € {modstb} such thatv € (D) if and only if V =
&5[S,C] for anyV such thatvcorresponds te. Thusé&y[S,C] encodes the enumeration
problem for ADFs with respect ta into the model enumeration problem for QBFs.

When encoding the reasoning tasks as QBFs we make use of smple shod-
ules. In the first place, given a set of statemefjtthe following formula “filters out”
interpretations which are not coherent®&n

cohg := /\ (s"AsY)

In order to encode the definitions of ADF semantics as QBFsftem meed to express
thatv(s) <;j V(s) on alls € Sfor two interpretations of an ADP = (S,C). The formula

S < Gi= /\ (GETRVNCEET)

does precisely that assuming bethndV are three valued and the former is defined on
Ss and the latter o18;. The formula below

S <iSi= A\((S" =) A(s” = —9))
€S

expresses this in cases three valued but is two valued. In other words f =S <; S
(andv'is coherent ors3) thenv'encodes two interpretations &na three valued interpre-
tationv and a two valued interpretation, s.t.v=g, v, V=gV andv € [V|o.

To encode admissible semantics of ADFs we make use of treiiolty proposition.

Proposition 1. Let D= (S {¢s}scs) be an ADF and v a three valued interpretation on
S. Then e adm(D) iff v(s) <; w(¢s) for all s € S and we [V],.

This leads us to our first encoding for admissible semanfigdé-s. The following
formula consists of two conjuncts for an ADF= (S,C). The left one states that each
modelv'= &,4nS,C] on the free variableS; is coherent. The right conjunct encodes the
preceding proposition. Simply put, for the three valuediiptetationv corresponding to
vV (V=s, v) we have that for all the two valued extensiovef vit holds thatv(s) <; w(¢s).

SadmlS,C] i=CONFAVS((S <i S) = A\ ((S” = ¢s) A (s” — —¢s)))

s€S

We encode the enumeration of all complete interpretatibas @DF as follows.

&eon[S.C] i= EaamSCIA A (¥ A-s7) - ISUS (S <i SAS < S A piA )

s€S

That is, the free variables 6t,[S, C| areS; and the first conjunct ensures that these
correspond to an admissible interpretation. The rightwaetjis slightly more involved.
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If a statement is undecided (botfi ands® evaluate to false), then there must be two
two valued extensions of the admissible interpretatiorg evaluating the acceptance
condition ofsto true and another, which evaluatgsto false.

Using again the encoding for admissibility we encode preféisemantics in the
next formula. The formula specifies that the result shouldespond to an admissible
interpretationv and for any admissible interpretatighwith greater or equal information
content we require thais) = V/(s) for anyse S.

gprf [SC] = cfadm[S,C] /\V%(é’adm[S’,C’] — (83 < Sg — % <i 53))

The grounded semantics uses a similar technique as weedtftiz preferred. Instead
of the module for admissible interpretations we use coreemantics and require that
the result is information minimal. A three valued interpttéinv is preferred for an ADF
D if for all vV € adm(D) we have either that andV' are incomparable w.r.&;, or that
V < v. The grounded interpretation is thkg-minimal complete interpretation and thus
all complete interpretations are comparable to the grodiirderpretation. Therefore the
encoding for the grounded semantics is slightly simplen tha one for preferred, where
the check for comparability has to be included.

é()grd[SC] = &eomS,C] /\VSs(éacom[S,,C/] -+ Ss)

Having established the encodings for the three valued siteaon ADFs we now
proceed to the remaining two valued semantics. We begintwithvalued models.

Smod S C] 1= /\(S<—> os)

seS

The last semantics we encode are the stable models of ADFfirdeequire that
the result corresponds to a two valued ADF model (first catjlnelow). The two re-
maining conjuncts encode the computation via the reduae e use a simple “trick”.
Intuitively, by conjoining the acceptance condition $@nd thus inserting a statement
of a different vocabulary than the onesgg, we achieve that if is evaluated to false
by aVv = &[S Cl, then the acceptance condition can be seen as equivaléntThis
simulates the replacement afby a statement mapped to false in the reduct for the sta-
ble semantics, since the grounded interpretation setsaddiraents to false, whosebs
is equivalent tol. Otherwise ifV(s) = t, then the acceptance condition is unchanged.
The grounded module “computes” the grounded interpretatiof the reduct. We then
require that a statemestis set to true by (i.e. s is evaluated to true) if§ is set to
true byV. That is, the statements set to true in the two valued moéehlap true in the
grounded interpretation of the reduct.

stb[S.C] = Emod SCIA A\ (54> §7) A bgralS, { B A Sheed]

seS

The correctness of our encodings is summarized in the nextogition. Due to
space limitations we have to omit the proof.

Proposition 2. Let D= (SC) be an ADF,0 € {adm, com, prf, gr§l and o’ € {mod,
stb}. It holds that{V |= £5[S C|} =g, {ve o(D)} and{V = £,[SC]} =s{ve 0'(D)}.
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Having the defining encoding function for a semanticencodings for the reason-
ing tasks we consider with respectdocan be given in a standard fashion:

Proposition 3. Let D= (S C) be an ADF, < S, 0 € {admcom prf, grd, mod stb}. If
o € {admcomprf,grd}, then let x= s* and T= S;. Otherwise ifo € {mod stb}, then
let x=sand T=S. It holds that

e Credy(s,D) =yesiffT (£5[S C] AX) is satisfiable; and
e Skepty(S D) = yesiffyT (65[S C] — X) is satisfiable.

Many of these encodings not only provide a uniform way of dieqj credulous
or skeptical queries, but are also adequate w.r.t. theimpexity. Since for any ADF
D = (S,C) ands € Swe haveCredagm(s, D) = Credcom(s, D) = Credp (s,D) we can use
the encodings for admissibility in these cases. TransfograT (S39m[S, C] AX) to PNF
results in a formula of prefix typE,, i.e. a QBF in a class of QBFs for which satisfia-
bility is ZE complete Credagmis alsozg’ complete). We similarly arrive at QBFs in PNF
which match the corresponding complexity of the decisionbfgms forSkeptys and
credulous as well as skeptical reasoning for two valued inget@antics. For instance,
the QBFVT (&pt[S.C|] — x) can be transformed to a PNF with prefix tyide. Skeptical
acceptance w.r.t. admissible semantics is trivial.

For the remaining queries our encodings do not result in QBifis a prefix type
matching the complexity of the corresponding decision [@woton ADFs. The reason for
this is that our encoding for grounded semantics, if traedléo PNF, has a higher prefix
type than the complexity of the corresponding decision lgmls would suggest. How-
ever, complexity adequate encodings for grounded sensaarécpossible [16]. These are
more involved and incorporate more propositional varigipler statement. Finally since
Skeptcom(s, D) = Skeptgra(s,D), also skeptical acceptance w.r.t. complete semantics can
be encoded with a lower prefix type than presented here.

4. System

The encodings presented in the previous section can be as®plement a “reasoner”
without much effort. We have implemented a prototype of saiglystem which we call
QADF2. It is essentially a compiler which, when given a represiénaof an ADF and a
reasoning task of choice, outputs the encoding of the task@BF and then makes use
of a state-of-the-art QSAT solver to solve it.

QADF is itself aUni x script called from command line. For the input format a rep-
resentation that is also used in previous existing systema&®Fs includingDl AMOND
[13] is adopted. Each statemesitis encoded via the stringt at enent (s) . The ac-
ceptance conditiofr of s is specified in prefix notation viac( s, F) . For example the
acceptance conditions of the ADF from Figure 1 are encodéallas/s: ac(a, c(v)),
ac(b, or(neg(a),c)),andac(c, c),wherec(v) stands forT.

The translation from ADFs to QBFs which we have implemente&cala (2.9.3)
generates its output in the QDIMACS format which is an extamsf the DIMACS for-
mat assumed by most SAT solvers. The output formulas areaedeusing the Tseitin
transformation (adapted for QBFs) optimized to our settifig back-end we use the

2http://ww. dbai . tuwi en. ac. at/ proj / adf / qadf
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Table 2.: Number of time-outs obl AMOND andQADF for computation of credulous and skeptical
acceptance of statements with respect to admissible and preferredt®smbostance sets are
partitioned according to the number of statements the ADFs in them have.

(a) Credulous acceptance - admissible (b) Skeptical acceptance - preferred
Statements DI AMOND QADF Statements DI AMOND QADF
10 0/120 0/120 10 0/60 0/60
20 0/120 0/120 15 0/60 0/60
30 0/120 0/120 20 30/60 0/60
40 0/120 0/120 25 54/60 52/60
50 0/120 1/120 30 45/60 60/60
60 0/120 3/120

QSAT solverDep@BF [17] which was placed first in the main track of the QBFEVAL
2010 competition for QSAT solvers. We also ileoqqger [18] for pre-processing.

We have carried out preliminary experiments to determiag#rformance d)ADF
focusing onCredagm and Skeptpr @and comparing it to that obl AMOND. As already
indicated,DI AMOND is based on encodings to answer set programming and uses the
Pot assco bundle of ASP tools.

All experiments were carried out on arpenSuse (11.4) machine with eight
I nt el Xeon processors (2.33 GHz) and 48 GB of memory. Apart flQADF (version
0.2) we use the latest version@if AMOND (version 0.9) which, in turn, requirgg i ngo
(version 3.0.4)cl asp (version 2.1.5), andl aspD (version 1.1.4) fronPot assco.

DI AMOND only does enumeration of interpretations out of the box saeapted it (us-
ing ASP constraints) in order to carry out credulous and tsé&reasoning. FOQADF
we useBl oqger (version 031) andepQBF (version 2.0).

In order to generate random instances of ADFs for our expariswe have used the
generator used to test the precursoDbAMOND, ADFSys [19]. This generator aligns
statements in a grid, with a width of 7 in our experiments. fitial number of statements
n is the parameter for the size of the generated ADF. Eachns¢etiein the grid has as
its parents a subset of the eight neighbours in the grid. Teemance condition for
a statemens is created as follows witlk one ofs's eight neighbors in the grid. The
probability that the link(x, s) is symmetric is b and otherwise with equal chance a link
in one direction. Given the set of parentsspfve constructps by iteratively connecting
the parents via or V. Additionally there is a @ probability that a statement is replaced
during this process by a truth constant (again with equdodity for T or L).

For the experiments fo€redagm We have generated 240 ADF instances, with 40
instances of 10, 20, 30, 40, 50, and 60 statementsSkept, s we generated 100 ADF
instances, with 20 instances of 10, 15, 20, 25, and 30 statisnfeor each ADF instance
we also generated reasoning tasks for 3 arbitrarily chotsemsents (the statements
with identifiers 3, 5, and 7). This means that the total nundfe@nstances is 720 for
Credagm and 300 forSkepty,s. Based on first impressions we have also set a time-out
for each computation (each run QADF or DI AMOND) of 10 minutes (600 seconds).
Computation times have been calculated via the Wiire utility.

In our experiments no time-outs occurred fArAMOND for Credagm While there
were very few (4) forQADF on instances with 50 or more statements. There were a
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Figure 2.: Mean running times dbl AMOND andQADF for computation of credulous and skeptical
acceptance of statements with respect to admissible and preferredtesmbnstance sets are
partitioned according to the number of statements the ADFs in them have.

significant number of time-outs f&Gkepty,s for instances with 20 or more statements for
DI AMOND and 25 or more statements fQADF. Table 2 shows the time-outs.

Figures 2a and 2b represent the mean running tim&abF andDI AMOND, where
the instances with time-outs are disregarded. We have owluded mean times for
instance sets with ADFs with 10, 15, and 20 statementSKept,,s given the significant
number of time-outs for the instance sets with ADFs havingenstatements. Note that
for ADFs with 20 statementsl AMOND times-out on 30 instances, whi@\DF on none.

The results of our preliminary experiment suggests an aab&pperformance of
QADF for Credagm On instances with up to at least 40 statements, while therelearly
performance issues f&keptps for ADF instances with already 20 or more statements.
This situation reflects the relative intrinsic complexifyboth tasks.

The results do not indicate any clear and significant diffeeebetwee@QADF and
DI AMOND (adapted by us to support skeptical and credulous reasermrgept in the
case 0fSkeptps for ADFs with 20 statements wheB AMOND timed-out on half of the
instances, whil&€ADF was able to solve all these instances with lower mean computa
tion time thanDl AMOND on those instances in which it did not time-out. This case is
somewhat curious considering that for ADFs with 25 or moageshents botlbl AMOND
andQADF timed-out on most of the instances. For ADFs with 30 instateAMOND at
least manages to solve 15 instances WQ®F solves none in the allotted time.

The situation described does not warrant any other comeiubian thatQADF can
clearly compete wittDl AMOND on the reasoning tasks studied by us so far and that
further experiments are necessary to more clearly assessiiparative advantages and
limits of both systems. It should be observed that a limithaf turrent experimental set
up is that, because of the generator used, all the instamtfes €xperiments have a rather
simple structure and additionally fall into the class ofgiar ADFs” [5], which have
slightly milder complexity [8].

5. Conclusion

We have presented encodings of several reasoning taskediefinADFs into the lan-
guage of QBFs as well as a prototype system for ADFs basedes® tAhis has en-
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abled us to take advantage of recent developments for QBErsand thereby tackle
the high complexity of reasoning problems for ADFs. Pretfiary experiments show a
competitive performance to another existing ADF systenh cbhmpared to the success
of QBF-solvers in other domains, the results indicate texte is room for improvement.

Thus, future work will focus on tuning of the encodings to noye performance. In
particular, it may be that QBF-solvers are struggling tocadfitly deal with the signed
variables in our encodings, a concept we have borrowed fidry fhis issue needs fur-
ther investigation. Another point on our agenda is to spieeimur encodings for “less
complex” ADFs (e.g. bipolar ADFs). Finally, additional cptaxity in the structure of
the encodings due to the Tseitin transformation may be addiy using a QSAT solver
that does not require the input to be in PCNF.
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