
Reasoning in Abstract Dialectical
Frameworks Using Quantified Boolean

Formulas1

Martin DILLER, Johannes Peter WALLNER and Stefan WOLTRAN

Institute of Information Systems, Vienna University of Technology, Austria

Abstract Abstract dialectical frameworks (ADFs) constitute a recentand power-
ful generalization of Dung’s argumentation frameworks (AFs), where the relation-
ship between the arguments is specified via Boolean formulas. Recent results have
shown that this enhancement comes with the price of higher complexity compared
to AFs. In fact, acceptance problems in the world of ADFs can behard even for
the third level of the polynomial hierarchy. In order to implement reasoning prob-
lems on ADFs, systems for quantified Boolean formulas (QBFs) thus are suitable
engines to be employed. In this paper we present QBF encodingson ADF prob-
lems generalizing recent work on QBFs for AF labellings. Our encodings not only
provide a uniform and modular way of translating reasoning inADFs to QBFs, but
also build the basis for a novel system. We present a prototypeimplementation for
the admissible and preferred semantics and evaluate its performance in comparison
with another state-of-the-art tool for ADFs.

Keywords. Abstract dialectical frameworks, systems, quantified Boolean formulas

1. Introduction

Since its invention by Dung [1], abstract argumentation constitutes one of the main re-
search branches for computational models of argument. Hereby, the conflict resolution
between arguments is done by abstracting away from the arguments’ contents, yielding
a simple yet powerful framework for reasoning used as a core model in many argumen-
tation tasks and applications. Although very general, Dung’s argumentation frameworks
(AFs) do not directly support modelling more complex interactions between arguments.
For this and similar issues, several extensions of AFs have been proposed to date (e.g.
those presented in [2,3,4]), one of the most general being that of abstract dialectical
frameworks (ADFs) [5]. In this last framework, acceptance conditions in the form of
arbitrary Boolean formulas are associated to every argument. Proper generalizations of
Dung’s semantics have been given in [6].

Various reasoning tasks can be defined on abstract argumentation frameworks, some
of the central ones being those that evaluate the “acceptability” of an argument with
respect to a given framework and semantics. Already for AFs,most of the reasoning

1This research has been supported by the Austrian Science Fund (FWF) through projects I1102 and W1255-
N23.

1

tasks have been shown to suffer from high computational complexity [7]. For ADFs, the
complexity of many of the main reasoning tasks with respect to the generalized semantics
jump one level of the polynomial hierarchy [8], resulting insome of the reasoning tasks
even being on the third level of the polynomial hierarchy.

To deal with this high complexity, naive implementations for ADFs are not promis-
ing. Instead, one should aim at reducing the tasks in question to some other suitable lan-
guage for which sophisticated systems already exist. In this work we follow this idea and
present translations of some of the main reasoning tasks defined for ADFs into the satisfi-
ability problem of quantified Boolean formulas (QBFs). QBFsare an extension of propo-
sitional logic, allowing for quantification over propositional atoms. Its associated satisfi-
ability problem (QSAT) is complete for PSPACE while types ofQBFs classified accord-
ing to the structure of quantification provide us with complete problems for each level of
the polynomial hierarchy. These results indicate that reasoning problems for ADFs can
be efficiently transformed into QSAT problems with a certainquantifier structure. Em-
ploying the framework of QBFs thus allows for uniform translations of ADF reasoning
tasks. Moreover, these translations can be done in a manner that is “sensitive” to the in-
herent complexity of the reasoning tasks. Finally, increasingly efficient solvers for QSAT
(see, for example, the results presented in [9]) can be used for practical realizations.

On the theoretical side, our work continues the line of of study that has been initiated
for Dung style argumentation frameworks in [10] and [11]. Inboth of these works, reduc-
tions of the problems of evaluating Dung style AFs into the setting of quantified Boolean
logic are given. The more recent work by Arieli and Caminada in particular, which is
based on a so called “labelling approach” to defining the semantics of AFs presents some
parallels with the approach followed in [6] to define the semantics for ADFs. Thus this
work has been particularly influential for the approach we follow to give encodings for
the reasoning problems defined for ADFs.

Since we also present and give a first assessment of the performance of a prototype
system based on the encodings presented in this work, from a practical perspective our
work can be placed among “reduction-based approaches” [12]to implementation of ar-
gumentations systems. In particular, we give some first hints as to the potential benefits
of a QBF based implementation approach for reasoning on ADFsin regards to the sys-
temDIAMOND [13], which is the only other comparable ADF system known to us and is
based on reductions to the language of Answer-Set Programming (ASP).

We briefly summarize the main contributions of our work:

1. We provide “complexity-sensitive” encodings of the mainreasoning problems
defined for ADFs (evaluation, credulous acceptance, skeptical acceptance) with
respect to some of the major semantics (two valued models, admissible, com-
plete, preferred, grounded, stable) in the context of QBFs.

2. We present a prototype software system for reasoning on ADFs based on the en-
codings we provide in this work and report on preliminary experiments compar-
ing our prototype system with the ADF systemDIAMOND.

2

2. Background

2.1. Quantified Boolean Formulas

We recall the necessary background of Boolean logic and quantified Boolean formulas
(QBFs) [14]. Quantified Boolean logic is an extension to propositional logic.

The basis of propositional logic is a set of propositional variablesP, to which we
also refer to as atoms. Propositional formulas are built as usual from the connectives
∧,∨,→,↔ and¬, denoting the logical conjunction, disjunction, (material) implication,
equivalence and negation respectively. As for truth constants, we use⊤ for the value
true and⊥ := ¬⊤ for false. QBFs additionally use the universal quantifier∀ and the
existential quantifier∃. If ϕ is a (quantified) Boolean formula, thenQpϕ is a QBF,
with Q ∈ {∀,∃} and p ∈ P. QBFs may be nested using the logical connectives. Fur-
therQ{p1, . . . , pn}ϕ is a shortcut forQp1 · · ·Qpnϕ. The order of variables in consecutive
quantifiers of the same type does not matter. We define shorthands for implication and
equivalence:ϕ → ϕ ′ := ¬ϕ ∨ϕ ′ andϕ ↔ ϕ ′ := (ϕ → ϕ ′)∧ (ϕ ′ → ϕ).

A propositional variablep in a QBFϕ is free if it does not occur within the scope
of a quantifierQp and bound otherwise. Ifϕ contains no free variable, thenϕ is said
to be closed and otherwise open. Further we will writeϕ[p/ψ] to denote the result of
uniformly substituting each free occurrence ofp with ψ in the formulaϕ.

An interpretation ˆv : P → {t, f} defines for each propositional variable a truth as-
signment. We sometimes explicitly highlight that a ˆv is defined on a setX ⊆ P. The
evaluation on atoms generalizes as usual to arbitrary formulas: Given a formulaϕ and
an interpretation ˆv, thenϕ evaluates to true under ˆv (v̂ satisfiesϕ or v̂ is a model ofϕ,
denoted by ˆv |= ϕ) if one of the following holds, withp∈ P and QBFsψ, ψ1 andψ2.

• ϕ = p andv̂(p) = t;
• ϕ =⊤;
• ϕ = ¬ψ andψ does not evaluate to true under ˆv;
• ϕ = ψ1∧ψ2 and bothψ1 andψ2 evaluate to true under ˆv;
• ϕ = ψ1∨ψ2 and one ofψ1 andψ2 evaluates to true under ˆv;
• ϕ = ∃pψ and one ofψ[p/⊤] andψ[p/⊥] evaluates to true under ˆv;
• ϕ = ∀pψ and bothψ[p/⊤] andψ[p/⊥] evaluate to true under ˆv.

We extend the evaluation function ˆv to formulas, i.e. ˆv(ϕ) is the evaluation ofϕ underv̂.
Normal forms of (quantified) formulas play an important rolefor theoretical and

practical purposes. For unquantified formulas a well-knownnormal form is the conjunc-
tive normal form (CNF). A formula is in CNF if it is a conjunction of disjunctions of lit-
erals. A literal is either an atom or a negated atom. Translations of arbitrary Boolean for-
mulas to CNF are possible in polynomial time via a transformation given by Tseitin [15].

A well-known normal form for QBFs is the prenex normal form (PNF). A QBFϕ is
in PNF if ϕ is of the formQ1, . . . ,Qnψ with Qi ∈ {∀,∃} for 1≤ i ≤ n andψ a quantifier-
free formula. Ifψ is in CNF, thenϕ is in prenex conjunctive normal form (PCNF). The
computational complexity of deciding whetherϕ is satisfiable depends on the prefix type.
Every propositional formula has the prefix typeΣ0 = Π0. Let ϕ be a closed QBF with
prefix typeΣi (respectively,Πi) andX a set ofm> 0 propositional variables. Then the
formula∀Xϕ (respectively∃Xϕ) is of typeΠi+1 (respectivelyΣi+1) for i ≥ 0.

We assume familiarity with the complexity classes P, NP and coNP. We also make
use of the polynomial hierarchy, that can be defined (using oracle Turing machines as su-

3

perscript) as follows:ΣP
0 = ΠP

0 = P, ΣP
i+1 = NPΣP

i , ΠP
i+1 = coNPΣP

i for i ≥ 0. In general,
deciding whetherϕ is satisfiable isΣP

k complete ifϕ has prefix typeΣk and otherwise if
ϕ has prefix typeΠk, then the problem isΠP

k complete (k≥ 1).

2.2. Abstract Dialectical Frameworks

An abstract dialectical framework (ADF) is a directed graphwhose vertices represent
statements which can be accepted or not. The links representdependencies: the status of
a nodes only depends on the status of its parents (denotedparents(s)), that is, the nodes
with a direct link tos. In addition, each nodes has an associated acceptance condition
Cs specifying the conditions under whichs can be accepted.Cs is a function assigning
to each subset ofparents(s) one of the truth valuest, f. Intuitively, if for someR⊆
parents(s)we haveCs(R)= t, thenscan be accepted provided the nodes inRare accepted
and those inparents(s)\Rare not accepted.

Definition 1. Anabstract dialectical frameworkis a tuple D= (S,L,C) where

• S is a set of statements (positions, nodes),
• L ⊆ S×S is a set of links,
• C = {Cs}s∈S is a set of total functions Cs : 2parents(s) → {t, f}, one for each state-

ment s. Cs is called acceptance condition of s.

In many cases it is convenient to represent the acceptance conditionsC as a collec-
tion {ϕs}s∈S of propositional formulas. This leads to the logical representation of ADFs
we use in this paper where an ADFD is a pair(S,C) with the set of linksL implicitly
given as(a,b) ∈ L iff a appears inϕb.

We consider ADF semantics as defined in [6]. A semanticsσ assigns to an ADF
D a collection of two- or three-valued interpretations, denoted byσ(D). To distinguish
between interpretations of ADFs and QBFs we use ˆv, ŵ for QBF interpretations and
v,w for interpretations of ADFs. Forσ we consider in this paper admissible, complete,
grounded, preferred, two-valued and stable semantics of ADFs. We denote the semantics
by adm, com, grd, prf , modandstb.

The interpretations map statements to truth values. We use{t, f,u} as truth values,
denoting true, false and undecided respectively. The threetruth values are partially or-
dered by≤i according to their information content: we haveu <i t andu <i f and no
other pair in<i . The information ordering≤i extends in a straightforward way to in-
terpretationsv1,v2 overS in thatv1 ≤i v2 iff v1(s)≤i v2(s) for all s∈ S. A three-valued
interpretationv is two-valued if all statements are mapped to either true or false. For
a three-valued interpretationv, we say that a two-valued interpretationw extendsv iff
v≤i w. This means that all statements mapped tou by v are mapped tot or f by w. We
denote by[v]2 the set of all two-valued interpretations that extendv.

For an ADFD = (S,C), s∈ Sand a three-valued interpretationv, the characteristic
functionΓD(v) = v′ is given by

v′(s) =











t if w(ϕs) = t for all w∈ [v]2
f if w(ϕs) = f for all w∈ [v]2
u otherwise

4

a

⊤

b

¬a∨c

c

c

Figure 1.: ADF example

Table 1.: Complexity results for semantics of ADFs.

σ adm com prf grd mod stb
Credσ ΣP

2-c ΣP
2-c ΣP

2-c coNP-c NP-c ΣP
2-c

Skeptσ trivial coNP-c ΠP
3-c coNP-c coNP-c ΠP

2-c

That is, the operator returns a three-valued interpretation, mapping a statements to t, or
respectivelyf, if all two-valued interpretations extendingv evaluateϕs to true, respec-
tively false. If there arew1,w2 ∈ [v]2, s.t.w1(ϕs) = t andw2(ϕs) = f, then the result isu.
Note that the characteristic function is defined on three-valued interpretations, while we
evaluate acceptance conditions under two-valued interpretations (two-valued extensions
of three-valued interpretations).

Definition 2. Let D= (S,L,C) be an ADF. A three-valued interpretation v is

• in adm(D) if v ≤i ΓD(v);
• in com(D) if v = ΓD(v);
• in grd(D) if v ∈ com(D) and there is no w∈ com(D) with w<i v;
• in prf (D) if v ∈ adm(D) and there is no w∈ adm(D) with v<i w.

For any ADF we have that all preferred interpretations are complete and all complete
interpretations are admissible [6]. Themodandstbsemantics rely on two-valued inter-
pretations. A two-valued interpretationv is a model of an ADFD= (S,C) if v(s) = v(ϕs)
for all s∈ S. Stable models are defined via a reduct.

Definition 3. Let D= (S,L,C) be an ADF with C= {ϕs}s∈S. A two-valued model v of D
is a stable model of D iff Ev = {s∈ S| v(s) = t} equals the statements set to true in the
grounded interpretation of the reduced ADF Dv = (Ev,Lv,Cv), where Lv = L∩ (Ev×Ev)
and for s∈ Ev we setϕv

s = ϕs[b/f : v(b) = f].

In Figure 1 we see an example ADFD = ({a,b,c},C). The acceptance conditions
are shown below the statements. This ADF has three complete interpretations:v1, v2

and v3 with v1(a) = t, v1(b) = v1(c) = u, v2(a) = v2(b) = v2(c) = t and v3(a) = t,
v3(b) = v3(c) = f. Furtherv1 is the grounded interpretation ofD, both v2 and v3 are
preferred interpretations and two valued models ofD. Only v3 is a stable model ofD.

We recall two important reasoning tasks on ADFs for a semantics σ . A statement
s is credulously accepted in an ADFD for σ if s is true in at least onev ∈ σ(D). The
corresponding decision problem is denoted byCredσ . If s is true in allv ∈ σ(D), then
it is skeptically accepted inD w.r.t. σ , the decision problem denoted bySkeptσ . The
computational complexity of reasoning in ADFs is summarized in Table 1. The results
were shown in [6,8].

5

3. Encodings

In this section we present our encodings of reasoning tasks for ADFs in QBFs. We de-
velop for an ADF(S,C) and a semanticsσ a defining encoding, denoted byEσ [S,C].
Eσ [S,C] is a QBF whose models correspond to theσ interpretations of the ADF(S,C).

We begin with some preliminaries. For ease of presentation we will slightly abuse
our notation and use for an ADFD = (S,C) the statements inS also as propositional
variables. To encode expressions about three valued interpretations as QBFs we follow
the procedure that has already been used in [11] to encode expressions about (three val-
ued) labellings for AFs. Specifically, we assume that for every setSof propositional vari-
ables representing statements of some ADF the alphabet of QBFs also contains the set
S3 := {s⊕ | s∈ S}∪{s⊖ | s∈ S} of signed variables. The intended meaning ofs⊕ is that
s is accepted ands⊖ thats is rejected under some interpretation. Intuitively, a statement
is undecided if boths⊕ ands⊖ are false in a model.

Since the definitions of semantics of ADFs often refer to several interpretations (e.g.
the extensions of a given interpretation) we also use disjoint sets of propositional vari-
ables to implicitly refer to these different interpretations in our encodings. We distin-
guish the different sets by “priming” the variables inS, i.e. S′ := {s′ | s∈ S}. Prim-
ing an already primed set adds another prime, e.g.(S′)′ = {s′′ | s∈ S}. The renaming
via primes is straightforwardly extended to formulas and sets of formulas, i.e.ϕ ′ is ob-
tained by replacing all variabless in ϕ by s′. Similarly for an ADFD = (S,C) we define
C′ := {ϕ ′

s}s∈S. If we apply both signing and priming, then priming takes precedence, i.e.
S′3 = {s′⊕ | s∈ S}∪{s′⊖ | s∈ S}.

ADF semantics are based on three or two truth values. Since there are four possible
truth value assignments for a statements via s⊕,s⊖ ∈ S3, we need to restrict attention to
coherentinterpretations for QBFs, which exclude the possibility for a model to satisfy
boths⊕ ands⊖.

Definition 4. Let S be a set. A two valued interpretationv̂ iscoherenton S3 if there is no
s∈ S such that̂v(s⊕) = t andv̂(s⊖) = t.

We now formally define the correspondence we require of the modelsv̂ |= Eσ [S,C]
andv∈ σ(D) for an ADFD = (S,C) and a semanticsσ .

Definition 5. Let D= (S,C) be an ADF. We define two concepts of correspondences. We
say that a two valued interpretation̂v on S corresponds to atwo valuedinterpretation v
on S, denoted aŝv∼=S v if v(s) = v̂(s) for all s∈ S. A coherent two valued interpretation
v̂′ on S3 corresponds to athree valuedinterpretation v′ on S, denoted aŝv′ ∼=S3 v′ if the
following three conditions are met:

a) v′(s) = t if and only ifv̂′(s⊕) = t andv̂′(s⊖) = f;
b) v′(s) = f if and only ifv̂′(s⊕) = f andv̂′(s⊖) = t; and
c) v′(s) = u if and only ifv̂′(s⊕) = f andv̂′(s⊖) = f.

That is, if v̂∼=S v, thenv̂ encodes a two valued interpretationv and we directly com-
pare variables inS. Otherwise if ˆv′ ∼=S3 v′, thenv̂′ encodes a three valued interpretationv
on Sand the correspondence is formally over the atoms inS3. We extend these notions
to sets of models of QBFs and interpretations of ADFs as follows. Let V be a set of
QBF models,W be a set of (two or three valued) interpretations andX ∈ {S,S3}. Then

6

V ∼=X W iff (i) for each v̂ ∈ V there is aw ∈ W , s.t. v̂ ∼=X w and (ii) for eachw ∈ W

there is a ˆv∈ V , s.t.v̂∼=X w.
The encodings we present are all constructed following the same general strategy.

For an ADFD = (S,C) we define a QBFEσ [S,C] with free variables inS3 for σ ∈
{adm,com,prf ,grd} andS for σ ∈ {mod,stb} such thatv ∈ σ(D) if and only if v̂ |=
Eσ [S,C] for any v̂ such that ˆv corresponds tov. ThusEσ [S,C] encodes the enumeration
problem for ADFs with respect toσ into the model enumeration problem for QBFs.

When encoding the reasoning tasks as QBFs we make use of some simple mod-
ules. In the first place, given a set of statementsS, the following formula “filters out”
interpretations which are not coherent onS3:

coh[S] :=
∧

s∈S

¬(s⊕∧s⊖)

In order to encode the definitions of ADF semantics as QBFs we often need to express
thatv(s)≤i v′(s) on alls∈ S for two interpretations of an ADFD = (S,C). The formula

S3 ≤i S′3 :=
∧

s∈S

((s⊕ → s′⊕)∧ (s⊖ → s′⊖))

does precisely that assuming bothv andv′ are three valued and the former is defined on
S3 and the latter onS′3. The formula below

S3 ≤i S:=
∧

s∈S

((s⊕ → s)∧ (s⊖ →¬s))

expresses this in casev is three valued butv′ is two valued. In other words if ˆv |= S3 ≤i S
(andv̂ is coherent onS3) thenv̂ encodes two interpretations onS: a three valued interpre-
tationv and a two valued interpretationv′, s.t.v̂∼=S3 v, v̂∼=S v′ andv′ ∈ [v]2.

To encode admissible semantics of ADFs we make use of the following proposition.

Proposition 1. Let D= (S,{ϕs}s∈S) be an ADF and v a three valued interpretation on
S. Then v∈ adm(D) iff v(s)≤i w(ϕs) for all s∈ S and w∈ [v]2.

This leads us to our first encoding for admissible semantics of ADFs. The following
formula consists of two conjuncts for an ADFD = (S,C). The left one states that each
modelv̂ |= Eadm[S,C] on the free variablesS3 is coherent. The right conjunct encodes the
preceding proposition. Simply put, for the three valued interpretationv corresponding to
v̂ (v̂∼=S3 v) we have that for all the two valued extensionswof v it holds thatv(s)≤i w(ϕs).

Eadm[S,C] := coh[S]∧∀S
(

(S3 ≤i S)→
∧

s∈S

((s⊕ → ϕs)∧ (s⊖ →¬ϕs))
)

We encode the enumeration of all complete interpretations of an ADF as follows.

Ecom[S,C] := Eadm[S,C]∧
∧

s∈S

(

(¬s⊕∧¬s⊖)→∃S′∪S′′(S3 ≤i S′∧S3 ≤i S′′∧ϕ ′
s∧¬ϕ ′′

s)
)

That is, the free variables ofEcom[S,C] areS3 and the first conjunct ensures that these
correspond to an admissible interpretation. The right conjunct is slightly more involved.

7

If a statement is undecided (boths⊕ ands⊖ evaluate to false), then there must be two
two valued extensions of the admissible interpretation, one evaluating the acceptance
condition ofs to true and another, which evaluatesϕs to false.

Using again the encoding for admissibility we encode preferred semantics in the
next formula. The formula specifies that the result should correspond to an admissible
interpretationv and for any admissible interpretationv′ with greater or equal information
content we require thatv(s) = v′(s) for anys∈ S.

Eprf [S,C] := Eadm[S,C]∧∀S′3
(

Eadm[S
′,C′]→ (S3 ≤i S′3 → S′3 ≤i S3)

)

The grounded semantics uses a similar technique as we utilized for preferred. Instead
of the module for admissible interpretations we use complete semantics and require that
the result is information minimal. A three valued interpretationv is preferred for an ADF
D if for all v′ ∈ adm(D) we have either thatv andv′ are incomparable w.r.t.≤i , or that
v′ ≤i v. The grounded interpretation is the≤i-minimal complete interpretation and thus
all complete interpretations are comparable to the grounded interpretation. Therefore the
encoding for the grounded semantics is slightly simpler than the one for preferred, where
the check for comparability has to be included.

Egrd[S,C] := Ecom[S,C]∧∀S′3(Ecom[S
′,C′]→ S3 ≤i S′3)

Having established the encodings for the three valued semantics on ADFs we now
proceed to the remaining two valued semantics. We begin withtwo valued models.

Emod[S,C] :=
∧

s∈S

(s↔ ϕs)

The last semantics we encode are the stable models of ADFs. Wefirst require that
the result corresponds to a two valued ADF model (first conjunct below). The two re-
maining conjuncts encode the computation via the reduct. Here we use a simple “trick”.
Intuitively, by conjoining the acceptance condition bys and thus inserting a statement
of a different vocabulary than the ones inϕ ′

s, we achieve that ifs is evaluated to false
by a v̂ |= Estb[S,C], then the acceptance condition can be seen as equivalent to⊥. This
simulates the replacement of⊥ by a statement mapped to false in the reduct for the sta-
ble semantics, since the grounded interpretation sets all statementss to false, whoseϕs

is equivalent to⊥. Otherwise if ˆv(s) = t, then the acceptance condition is unchanged.
The grounded module “computes” the grounded interpretation v of the reduct. We then
require that a statements′ is set to true byv (i.e. s′⊕ is evaluated to true) iffs is set to
true byv̂. That is, the statements set to true in the two valued model are also true in the
grounded interpretation of the reduct.

Estb[S,C] := Emod[S,C]∧
∧

s∈S

(s↔ s′⊕)∧Egrd[S
′,{ϕ ′

s∧s}s∈S]

The correctness of our encodings is summarized in the next proposition. Due to
space limitations we have to omit the proof.

Proposition 2. Let D= (S,C) be an ADF,σ ∈ {adm, com, prf , grd} and σ ′ ∈ {mod,
stb}. It holds that{v̂ |= Eσ [S,C]} ∼=S3 {v∈ σ(D)} and{v̂ |= Eσ ′ [S,C]} ∼=S {v∈ σ ′(D)}.

8

Having the defining encoding function for a semanticsσ , encodings for the reason-
ing tasks we consider with respect toσ can be given in a standard fashion:

Proposition 3. Let D= (S,C) be an ADF, s∈ S,σ ∈ {adm,com,prf ,grd,mod,stb}. If
σ ∈ {adm,com,prf ,grd}, then let x= s⊕ and T= S3. Otherwise ifσ ∈ {mod,stb}, then
let x= s and T= S. It holds that

• Credσ (s,D) = yes iff∃T(Eσ [S,C]∧x) is satisfiable; and
• Skeptσ (S,D) = yes iff∀T(Eσ [S,C]→ x) is satisfiable.

Many of these encodings not only provide a uniform way of deciding credulous
or skeptical queries, but are also adequate w.r.t. their complexity. Since for any ADF
D = (S,C) ands∈ Swe haveCredadm(s,D) = Credcom(s,D) = Credprf (s,D) we can use
the encodings for admissibility in these cases. Transforming ∃T(Eadm[S,C]∧ x) to PNF
results in a formula of prefix typeΣ2, i.e. a QBF in a class of QBFs for which satisfia-
bility is ΣP

2 complete (Credadm is alsoΣP
2 complete). We similarly arrive at QBFs in PNF

which match the corresponding complexity of the decision problems forSkeptprf and
credulous as well as skeptical reasoning for two valued model semantics. For instance,
the QBF∀T(Eprf [S,C]→ x) can be transformed to a PNF with prefix typeΠ3. Skeptical
acceptance w.r.t. admissible semantics is trivial.

For the remaining queries our encodings do not result in QBFswith a prefix type
matching the complexity of the corresponding decision problem on ADFs. The reason for
this is that our encoding for grounded semantics, if translated to PNF, has a higher prefix
type than the complexity of the corresponding decision problems would suggest. How-
ever, complexity adequate encodings for grounded semantics are possible [16]. These are
more involved and incorporate more propositional variables per statement. Finally since
Skeptcom(s,D) = Skeptgrd(s,D), also skeptical acceptance w.r.t. complete semantics can
be encoded with a lower prefix type than presented here.

4. System

The encodings presented in the previous section can be used to implement a “reasoner”
without much effort. We have implemented a prototype of sucha system which we call
QADF2. It is essentially a compiler which, when given a representation of an ADF and a
reasoning task of choice, outputs the encoding of the task asa QBF and then makes use
of a state-of-the-art QSAT solver to solve it.

QADF is itself aUnix script called from command line. For the input format a rep-
resentation that is also used in previous existing systems for ADFs includingDIAMOND
[13] is adopted. Each statements is encoded via the stringstatement(s). The ac-
ceptance conditionF of s is specified in prefix notation viaac(s,F). For example the
acceptance conditions of the ADF from Figure 1 are encoded asfollows:ac(a,c(v)),
ac(b,or(neg(a),c)), andac(c,c), wherec(v) stands for⊤.

The translation from ADFs to QBFs which we have implemented in Scala (2.9.3)
generates its output in the QDIMACS format which is an extension of the DIMACS for-
mat assumed by most SAT solvers. The output formulas are generated using the Tseitin
transformation (adapted for QBFs) optimized to our setting. As back-end we use the

2 http://www.dbai.tuwien.ac.at/proj/adf/qadf

9

Table 2.:Number of time-outs ofDIAMOND andQADF for computation of credulous and skeptical
acceptance of statements with respect to admissible and preferred semantics. Instance sets are
partitioned according to the number of statements the ADFs in them have.

(a) Credulous acceptance - admissible

Statements DIAMOND QADF
10 0/120 0/120
20 0/120 0/120
30 0/120 0/120
40 0/120 0/120
50 0/120 1/120
60 0/120 3/120

(b) Skeptical acceptance - preferred

Statements DIAMOND QADF
10 0/60 0/60
15 0/60 0/60
20 30/60 0/60
25 54/60 52/60
30 45/60 60/60

QSAT solverDepQBF [17] which was placed first in the main track of the QBFEVAL
2010 competition for QSAT solvers. We also useBloqqer [18] for pre-processing.

We have carried out preliminary experiments to determine the performance ofQADF
focusing onCredadm andSkeptprf and comparing it to that ofDIAMOND. As already
indicated,DIAMOND is based on encodings to answer set programming and uses the
Potassco bundle of ASP tools.

All experiments were carried out on anopenSuse (11.4) machine with eight
Intel Xeon processors (2.33 GHz) and 48 GB of memory. Apart fromQADF (version
0.2) we use the latest version ofDIAMOND (version 0.9) which, in turn, requiresgringo
(version 3.0.4),clasp (version 2.1.5), andclaspD (version 1.1.4) fromPotassco.
DIAMOND only does enumeration of interpretations out of the box so weadapted it (us-
ing ASP constraints) in order to carry out credulous and skeptical reasoning. ForQADF
we useBloqqer (version 031) andDepQBF (version 2.0).

In order to generate random instances of ADFs for our experiments we have used the
generator used to test the precursor ofDIAMOND, ADFSys [19]. This generator aligns
statements in a grid, with a width of 7 in our experiments. Thetotal number of statements
n is the parameter for the size of the generated ADF. Each statement in the grid has as
its parents a subset of the eight neighbours in the grid. The acceptance condition for
a statements is created as follows withx one of s’s eight neighbors in the grid. The
probability that the link(x,s) is symmetric is 0.5 and otherwise with equal chance a link
in one direction. Given the set of parents ofs, we constructϕs by iteratively connecting
the parents via∧ or∨. Additionally there is a 0.2 probability that a statement is replaced
during this process by a truth constant (again with equal probability for⊤ or⊥).

For the experiments forCredadm we have generated 240 ADF instances, with 40
instances of 10, 20, 30, 40, 50, and 60 statements. ForSkeptprf we generated 100 ADF
instances, with 20 instances of 10, 15, 20, 25, and 30 statements. For each ADF instance
we also generated reasoning tasks for 3 arbitrarily chosen statements (the statements
with identifiers 3, 5, and 7). This means that the total numberof instances is 720 for
Credadm and 300 forSkeptprf . Based on first impressions we have also set a time-out
for each computation (each run ofQADF or DIAMOND) of 10 minutes (600 seconds).
Computation times have been calculated via the Unixtime utility.

In our experiments no time-outs occurred forDIAMOND for Credadm, while there
were very few (4) forQADF on instances with 50 or more statements. There were a

10

10 20 30 40 50 60

0
1

2
3

4
5

6
7

Number of statements

M
ea

n
ru

nn
in

g
tim

e
(s

ec
) QADF

DIAMOND

(a) Credulous acceptance - admissible

Number of statements

M
ea

n
ru

nn
in

g
tim

e
(s

ec
)

0
50

10
0

15
0

20
0

10 15 20

QADF
DIAMOND

(b) Skeptical acceptance - preferred

Figure 2.: Mean running times ofDIAMOND andQADF for computation of credulous and skeptical
acceptance of statements with respect to admissible and preferred semantics. Instance sets are
partitioned according to the number of statements the ADFs in them have.

significant number of time-outs forSkeptprf for instances with 20 or more statements for
DIAMOND and 25 or more statements forQADF. Table 2 shows the time-outs.

Figures 2a and 2b represent the mean running times ofQADF andDIAMOND, where
the instances with time-outs are disregarded. We have only included mean times for
instance sets with ADFs with 10, 15, and 20 statements forSkeptprf given the significant
number of time-outs for the instance sets with ADFs having more statements. Note that
for ADFs with 20 statementsDIAMOND times-out on 30 instances, whileQADF on none.

The results of our preliminary experiment suggests an acceptable performance of
QADF for Credadm on instances with up to at least 40 statements, while there are clearly
performance issues forSkeptprf for ADF instances with already 20 or more statements.
This situation reflects the relative intrinsic complexity of both tasks.

The results do not indicate any clear and significant difference betweenQADF and
DIAMOND (adapted by us to support skeptical and credulous reasoning), except in the
case ofSkeptprf for ADFs with 20 statements whereDIAMOND timed-out on half of the
instances, whileQADF was able to solve all these instances with lower mean computa-
tion time thanDIAMOND on those instances in which it did not time-out. This case is
somewhat curious considering that for ADFs with 25 or more statements bothDIAMOND
andQADF timed-out on most of the instances. For ADFs with 30 instancesDIAMOND at
least manages to solve 15 instances whileQADF solves none in the allotted time.

The situation described does not warrant any other conclusion than thatQADF can
clearly compete withDIAMOND on the reasoning tasks studied by us so far and that
further experiments are necessary to more clearly assess the comparative advantages and
limits of both systems. It should be observed that a limit of the current experimental set
up is that, because of the generator used, all the instances in the experiments have a rather
simple structure and additionally fall into the class of “bipolar ADFs” [5], which have
slightly milder complexity [8].

5. Conclusion

We have presented encodings of several reasoning tasks defined on ADFs into the lan-
guage of QBFs as well as a prototype system for ADFs based on these. This has en-

11

abled us to take advantage of recent developments for QBF-solvers and thereby tackle
the high complexity of reasoning problems for ADFs. Preliminary experiments show a
competitive performance to another existing ADF system, but compared to the success
of QBF-solvers in other domains, the results indicate that there is room for improvement.

Thus, future work will focus on tuning of the encodings to improve performance. In
particular, it may be that QBF-solvers are struggling to efficiently deal with the signed
variables in our encodings, a concept we have borrowed from [11]; this issue needs fur-
ther investigation. Another point on our agenda is to specialize our encodings for “less
complex” ADFs (e.g. bipolar ADFs). Finally, additional complexity in the structure of
the encodings due to the Tseitin transformation may be avoided by using a QSAT solver
that does not require the input to be in PCNF.

References

[1] Dung, P.M.: On the Acceptability of Arguments and its Fundamental Role in Nonmonotonic Reasoning,
Logic Programming and N-person Games. Artificial Intelligence77 (1995) 321–357

[2] Bench-Capon, T.J.M.: Persuasion in Practical Argument Using Value-Based Argumentation Frame-
works. Journal of Logic and Computation13 (2003) 429–448

[3] Cayrol, C., Lagasquie-Schiex, M.: On the Acceptabilityof Arguments in Bipolar Argumentation Frame-
works. In: ECSQARU’05. Volume 3571 of LNCS. Springer (2005) 378–389

[4] Baroni, P., Cerutti, F., Giacomin, M., Guida, G.: AFRA: Argumentation Framework with Recursive
Attacks. International Journal of Approximate Reasoning52 (2011) 19–37

[5] Brewka, G., Woltran, S.: Abstract Dialectical Frameworks. In: KR’10. (2010) 102–111
[6] Brewka, G., Ellmauthaler, S., Strass, H., Wallner, J.P.,Woltran, S.: Abstract Dialectical Frameworks

Revisited. In: IJCAI’13. (2013) 803–809
[7] Dunne, P.E., Bench-Capon, T.J.M.: Coherence in Finite Argument Systems. Artificial Intelligence141

(2002) 187–203
[8] Strass, H., Wallner, J.P.: Analyzing the Computational Complexity of Abstract Dialectical Frameworks

via Approximation Fixpoint Theory. In: KR’14. (2014) 101–110
[9] Lonsing, F., Seidl, M., eds.: Informal Workshop Report onthe International Workshop on Quantified

Boolean Formulas 2013. (2013)
[10] Egly, U., Woltran, S.: Reasoning in Argumentation Frameworks Using Quantified Boolean Formulas.

In: COMMA’06. Volume 144 of FAIA. (2006) 133–144
[11] Arieli, O., Caminada, M.W.A.: A QBF-Based Formalizationof Abstract Argumentation Semantics.

Journal of Applied Logic11 (2013) 229–252
[12] Charwat, G., Dvǒrák, W., Gaggl, S.A., Wallner, J.P., Woltran, S.: ImplementingAbstract Argumentation

- A Survey. Technical Report DBAI-TR-2013-82, Technische Universiẗat Wien (2013)
[13] Ellmauthaler, S., Strass, H.: The DIAMOND System for Argumentation: Preliminary Report. In: AS-

POCP’13. (2013) 97–108
[14] Büning, H.K., Bubeck, U.: Theory of Quantified Boolean Formulas. In: Handbook of Satisfiability.

Volume 185 of FAIA. (2009) 735–760
[15] Tseitin, G.S.: On the Complexity of Derivations in the Propositional Calculus. Studies in Mathematics

and Mathematical LogicPart II (1968) 115–125
[16] Diller, M.: Solving Reasoning Problems on Abstract Dialectical Frameworks via Quantified Boolean

Formulas. Master’s thesis, Technische Universität Wien, Institut f̈ur Informationssysteme (2014)
[17] Lonsing, F., Biere, A.: DepQBF: A Dependency-Aware QBFSolver. Journal on Satisfiability, Boolean

Modelling and Computation7 (2010) 71–76
[18] Biere, A., Lonsing, F., Seidl, M.: Blocked Clause Elimination for QBF. In: CADE’11. Volume 6803 of

LNCS. (2011) 101–115
[19] Ellmauthaler, S.: Abstract Dialectical Frameworks: Properties, Complexity, and Implementation. Mas-

ter’s thesis, Technische Universität Wien, Institut f̈ur Informationssysteme (2012)

12

